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Optimization – Continuous Portfolio Allocation        

File Name: Optimization – Continuous Portfolio Allocation  
Location: Modeling Toolkit | Optimization | Continuous Portfolio Allocation 
Brief Description: This model illustrates how to run an optimization on continuous decision variables, 
viewing and interpreting optimization results 
Requirements: Modeling Toolkit, Risk Simulator  

 

This model shows 10 asset classes with different risk and return characteristics. The idea here is to find 

the best portfolio allocation such that the portfolio’s bang-for-the-buck or returns to risk ratio is 

maximized. That is, to allocate 100% of an individual’s investment portfolio among several different asset 

classes (e.g., different types of mutual funds or investment styles: growth, value, aggressive growth, 

income, global, index, contrarian, momentum, and so forth). In order to run an optimization, several key 

specifications on the model have to be identified first:        

Objective:     
Maximize Return to Risk Ratio (C18)  

Decision Variables:    
Allocation Weights (E6:E15)  

Restrictions on Decision Variables:  
Minimum and Maximum Required (F6:G15)  

Constraints:     
Portfolio Total Allocation Weights 100% (E17 is set to 100%)  

      

The model shows the 10 asset classes. Each asset class has its own set of annualized returns and risks, 

measured by annualized volatilities (Figure 1). These return and risk measures are annualized values such 

that they can be consistently compared across different asset classes. Returns are computed using the 

geometric average of the relative returns, while the risks are computed using the annualized standard 

deviation of the logarithmic relative historical stock returns approach.       

      

The allocation weights in column E hold the decision variables, which are the variables that need to be 

tweaked and tested such that the total weight is constrained at 100% (cell E17). Typically, to start the 

optimization, we will set these cells to a uniform value; in this case, cells E6 to E15 are set at 10% each. 

In addition, each decision variable may have specific restrictions in its allowed range. In this example, the 

lower and upper allocations allowed are 5% and 35%, as seen in columns F and G. This setting means 

that each asset class may have its own allocation boundaries (Figure 1).        

 

Next, column H shows the return to risk ratio, which is simply the return percentage divided by the risk 

percentage, where the higher this value, the higher the bang-for-the-buck. The remaining sections of the 



model show the individual asset class rankings by returns, risk, return to risk ratio, and allocation. In other 

words, these rankings show at a glance which asset class has the lowest risk or the highest return, and so 

forth. 

 

 
Figure 1: Asset allocation optimization model  

 

Running an Optimization 

To run this model, simply click on Risk Simulator | Optimization | Run Optimization. Alternatively, 

for practice, you can try to set up the model again by doing (the steps are illustrated in Figure 2): 

1. Start a new profile (Risk Simulator | New Profile) and give it a name. 

2. Select cell E6, and define the decision variable (Risk Simulator | Optimization | Decision 

Variables, or click on the Define Decision D icon) and make it a Continuous Variable and 

then link the decision variable’s name and minimum/maximum required to the relevant cells 

(B6, F6, G6). 

3. Then use the Risk Simulator Copy on cell E6, select cells E7 to E15, and use Risk 

Simulator’s Paste (Risk Simulator | Copy Parameter and Risk Simulator | Paste 

Parameter or use the copy and paste icons). To re-run the optimization, type in 10% for all 

decision variables. 

4. Next, set up the optimization’s constraints by selecting Risk Simulator | Optimization | 

Constraints, selecting ADD, and selecting the cell E17, and making it (==) equal 100% (for 

total allocation, and remember to insert the % sign). 



5. Select cell C18 as the objective to be maximized (Risk Simulator | Optimization | 

Objective). 

6. Select Risk Simulator | Optimization | Run Optimization. Review the different tabs to 

make sure that all the required inputs in steps 2-4 are correct. 

7. You may now select the optimization method of choice and click OK to run the optimization: 

      

Discrete Optimization is an optimization that is run on a discrete or static model, where no simulations 
are run. This optimization type is applicable when the model is assumed to be known and no uncertainties 
exist. Also, a discrete optimization can be run first to determine the optimal portfolio and its 
corresponding optimal allocation of decision variables before applying more advanced optimization 
procedures. For instance, before running a stochastic optimization problem, first run a discrete 
optimization to determine if there exist solutions to the optimization problem before performing a more 
protracted analysis.             
Dynamic Optimization is applied when Monte Carlo simulation is used together with optimization. 
Another name for such a procedure is Simulation-Optimization. In other words, a simulation is run for N 
trials, and then an optimization process is run for M iterations until the optimal results are obtained or an 
infeasible set is found. That is, using Risk Simulator’s optimization module, you can choose which 
forecast and assumption statistics to use and replace in the model after the simulation is run. Then, you 
can apply these forecast statistics in the optimization process. This approach is useful when you have a 
large model with many interacting assumptions and forecasts, and when some of the forecast statistics 
are required in the optimization.           
Stochastic Optimization is similar to the dynamic optimization procedure except that the entire dynamic 
optimization process is repeated T times. The results will be a forecast chart of each decision variable 
with T values. In other words, a simulation is run and the forecast or assumption statistics are used in the 
optimization model to find the optimal allocation of decision variables. Then another simulation is run, 
generating different forecast statistics, and these new updated values are optimized, and so forth. Hence, 
each of the final decision variables will have its own forecast chart, indicating the range of the optimal 
decision variables. For instance, instead of obtaining single-point estimates in the dynamic optimization 
procedure, you can now obtain a distribution of the decision variables, and, hence, a range of optimal 
values for each decision variable, also known as a stochastic optimization. 
 

Note: If you are to run either a dynamic or stochastic optimization routine, make sure that you define the 

assumptions first in the model. That is, make sure that some of the cells in C6:D15 are assumptions. The 

model setup is illustrated in Figure 2. 



 

 

 

 
Figure 2: Optimization model setup 



Results Interpretation 

Refer to Chapter 11 of Modeling Risk: Applying Monte Carlo Simulation, Real Options Analysis, 

Forecasting, and Optimization, by Dr. Johnathan Mun (Wiley 2006) for more detailed explanations about 

this model, the different optimization techniques, and an interpretation of the results. Chapter 11’s 

appendix also details how the risk and return values are computed.  

 

Briefly, the optimization results show the percentage allocation for each asset class (or projects or 

business lines, et cetera) that would maximize the portfolio’s bang-for-buck, that is, the allocation that 

would provide the highest returns subject to the least amount of risk. In other words, for the same amount 

of risk, what is the highest amount of returns that can be generated, or for the same amount of returns, 

what is the least amount of risk that can be obtained? See Figure 3. This is the concept of the Markowitz 

efficient portfolio analysis. For a comparable example, see the Efficient Frontier model where we also 

generate the entire efficient frontier model. 

 

 
Figure 3: Optimization results  


