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Six Sigma — Obtaining Statistical Probabilities, Basic Hypothesis Tests, Confidence Intervals, and

Bootstrapping Statistics

File Names: Six Sigma — Hypothesis Testing and Bootstrap Simulation, and Six Sigma — Probabilities
and Hypothesis Tests (CDF, PDF, ICDF)

Location: Modeling Toolkit | Six Sigma | Hypothesis Testing and Bootstrap Simulation, and Probabilities
and Hypothesis Tests (CDF, PDF, ICDF)

Brief Description: This chapter illustrates how to use Risk Simulator’s Distributional Analysis and
Modeling Toolkit’s probability functions to obtain exact probabilities of events, confidence intervals and
hypothesis testing for quality control, as well as using Risk Simulator for running hypothesis tests after a
simulation run, generating a hypothesis test with raw data, understanding the concept of random seeds,
and running a nonparametric bootstrap simulation to obtain the confidence intervals of the statistics
Requirements: Modeling Toolkit, Risk Simulator

Computing Theoretical Probabilities of Events for Sig Sigma Quality Control

In this chapter, we use Risk Simulator’s Distributional Analysis tool and Modeling Toolkit’s functions to
obtain exact probabilities of the occurrence of events for quality control purposes. These will be
illustrated through some simple discrete distributions. The chapter also provides some continuous
distributions for the purposes of theoretical hypotheses tests. Then hypothesis testing on empirically
simulated data is presented, where we use theoretical distributions to simulate empirical data and run
hypotheses tests. The next chapter goes into more detail on using the Modeling Toolkit’s modules on one-
sample and two-sample hypothesis tests using t-tests and z-tests for values and proportions, analysis of
variance (ANOVA) techniques, and some powerful nonparametric tests for small sample sizes. This
chapter is a precursor and provides the prerequisite knowledge to the materials presented in the next

chapter.

A. Binomial Distribution

The binomial distribution describes the number of times a particular event occurs in a fixed number of
trials, such as the number of heads in 10 flips of a coin or the number of defective items out of 50 items
chosen. For each trial, only two outcomes are possible that are mutually exclusive. The trials are
independent, where what happens in the first trial does not affect the next trial. The probability of an
event occurring remains the same from trial to trial. Probability of success (p) and the number of total
trials (n) are the distributional parameters. The number of successful trials is denoted x (the x-axis of the
probability distribution graph). The input requirements in the distribution include: Probability of success

>0 and < 1 (for example, p > 0.0001 and p < 0.9999) and Number of Trials > 1 and integers and < 1000.



Example: If the probably of obtaining a part that is defective is 50%, what is the probability that in
selecting 4 parts at random, there will be no defective part, or 1 defective part, or 2 defective parts, and so

forth? Recreate the probability mass function or probability density function (PDF):

Probability of no defects P(X—O)' 6.25% using B2DistributionPDFBinomial(4,0,5,0) or computed:

Ci(5)"(H"" = = — =6.25%

(99 =5 O),()() o =6.25%
Probability of no defects P(x 1): 25.00% usmg B2DistributionPDFBinomial(4,0.5,1) or computed:
ClH(.5'(H" = 5) =—=25%

(9 = 1),<)<> ;
Probability of no defects P(X—Z)' 37.50% usmg B2Distributi0nPDFBinomia1(4,0.5 ,2) or computed:
C)(5 2= =—=37.50%

(705" =50 2),<)(> ;
Probability of no defects P(x 3): 25.00% usmg B2DistributionPDFBinomial(4,0.5,3) or computed:
Ci (5 (5" = 5) =—=25%

(:3)°(.5) . 3),()() 0
Probability of no defects P(x—4) 6.25% using B2DistributionPDFBinomial(4,0.5,4) or computed:
CJ(5 = —=6.25%

S = 4),<)() ;

Total probabilities: 100.00%

Where we define P(x=0) as the probability (P) of the number of successes of an event (x), and the mathematical
combination (C).

In addition, you can sum the probabilities up to obtain the cumulative distribution function (CDF):

Probability of no defects P(x=0): 6.25%
using B2DistributionCDFBinomial(4,0.5,0) or computed as P(x=0)
Probability of up to 1 defect P(x<=1): 31.25%
using B2DistributionCDFBinomial(4,0.5,1) or computed as P(x=0) + P(x=1)
Probability of up to 2 defects P(x<=2): 68.75%
using B2DistributionCDFBinomial(4,0.5,2) or computed as P(x=0) + P(x=1) + P(x=2)
Probability of up to 3 defects P(x<=3): 93.75%
using B2DistributionCDFBinomial(4,0.5,3) or computed as P(x=0) + P(x=1) + P(x=2) + P(x=3)
Probability of up to 4 defects P(x<=4): 100.00%
using B2DistributionCDFBinomial(4,0.5,4) or computed as P(x=0) + P(x=1) + P(x=2) + P(x=3) + P(x=4)

The same analysis can be performed using the Distribution Analysis tool in Risk Simulator. For instance,
you can start the tool by clicking on Risk Simulator | Tools | Distributional Analysis, selecting
Binomial, entering in 4 for Trials, 0.5 for Probability, and then selecting PDF as the type of analysis, and
a range of between 0 and 4 with a step of 1. The resulting able and PDF distribution is exactly as

computed using the Modeling Toolkit functions as seen in Figure 1.



In addition, the four distributional moments can be determined using the tool as well as using the B2

functions:

Mean or Average 2.00  using B2DistributionBinomialMean(4,0.5)
Standard Deviation 1.00  using B2DistributionBinomialStdev(4,0.5)
Skewness Coefficient 0.00  using B2DistributionBinomialSkew(4,0.5)
Kurtosis (Excess) —0.50 using B2DistributionBinomialkurtosis(4,0.5)

In addition, typically, for discrete distributions, the exact probabilities are called probability mass
functions (PMFs); they are called probability density functions (PDFs) for continuous distributions.
However, in this book, we use both terms interchangeably. Also, this chapter highlights only some of the
examples illustrated in the model. To view more detailed examples, please see the Excel model in the

Modeling Toolkit.
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Figure 1: Distributional analysis for a binomial PDF



B. Poisson Distribution

The Poisson distribution describes the number of times an event occurs in a given interval, such as the
number of telephone calls per minute or the number of errors per page in a document. The number of
possible occurrences in any interval is unlimited; the occurrences are independent. The number of
occurrences in one interval does not affect the number of occurrences in other intervals, and the average
number of occurrences must remain the same from interval to interval. Rate or Lambda is the only

distributional parameter. The input requirements for the distribution is Rate > 0 and < 1000.

Example: A tire service center has the capacity of servicing 6 customers in an hour. From prior
experience, on average 3 show up an hour. The owner is afraid that there might insufficient manpower to
handle an overcrowding of over 6 customers. What is the probability that there will be exactly 6

customers? What about 6 or more customers?

Using the Distributional Analysis tool, we see that the PDF of exactly 6 customers is 5.04% (Figure 2)
and the probability of 6 or more is the same as 1 — the probability of 5 or less, which is 1 — 91.61% or
8.39% (Figure 3).
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Figure 2: PDF on a Poisson
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Figure 3: CDF on a Poisson

C. Normal Distribution

The normal distribution is the most important distribution in probability theory because it describes many
natural phenomena, such as people’s 1Qs or heights. Decision makers can use the normal distribution to
describe uncertain variables such as the inflation rate or the future price of gasoline. Some value of the
uncertain variable is the most likely (the mean of the distribution), the uncertain variable could as likely
be above the mean as it could be below the mean (symmetrical about the mean), and the uncertain
variable is more likely to be in the vicinity of the mean than farther away. Mean (m) and standard
deviation (s) are the distributional parameters. The input requirements include: Mean can take on any

value and Standard Deviation > 0 and can be any positive value.



Example: You observe that in the past, on average, your manufactured batteries last for 15 months with a
standard deviation of 1.5 months. Assume that the battery life is normally distributed. If a battery is
randomly selected, find the probability that it has a life of less than 16.5 months or over 16.5 months.

Using the tool, we obtain CDF of X = 16.5 months as 84.13%, which means that there is 84.13% chance
that the manufactured batteries last up to 16.5 months and 1 — 0.8413 or 15.87% chance the batteries will
last over 16.5 months (Figure 4). The same value of 84.13% can be obtained using the function

B2DistributionCDFNormal(15,1.5,16.5) to obtain 84.13% (Figure 5).
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Figure 4: CDF of a normal distribution



Function Arguments |LE |

B2DistributionCDFMormal
Mean |15 BE| = 15
Stdev | 1,5 B = 15
X 165 EE| = 16.5
= 0.841344746

Computes the Mormal distribution’s theoretical Cumulative Distribution Function {CDF), thatis,
the cumulative probability of the distribution at all points less than or equal to X.

X

Formula result = 0.841344746

Help on this function | a4 I [ Cancel ‘

Figure 5: CDF of normal using function calls

Example: Alternatively, if you wish to provide a 12-month warranty on your batteries, i.e., if the battery
dies before 12 months, you will give a full refund. What are the chances that you may have to provide this

refund?

Using the tool, we find that the CDF for X = 12 is 2.28% chance that a refund will have to be issued
(Figure 6).

So far, we have been computing the probabilities of events occurring using the PDF and CDF functions
and tools. We can also reverse the analysis and obtain the X values given some probability, using the

inverse cumulative distribution function (ICDF), as seen next.

Example: If the probability calculated in problem 2 is too high, hence, too costly for you and you wish to
minimize the cost and probability of having to refund your customers down to a 1% probability, what

would be a suitable warranty date (in months)?

The answer is to provide anything less than an 11.51 month guarantee will most likely result in less than
or equal to a 1% chance of a return. To obtain the results here, we use the ICDF analysis in the
Distributional Analysis tool (Figure 7). Alternatively, we can use the Modeling Toolkit function
B2Distributionl CDFNormal(15,1.5,0.01) to obtain

11.510478 (Figure 8).
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Figure 6: Probability of a guarantee refund
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Figure 7: Obtaining the inverse cumulative distribution function (ICDF)

Function Arguments i @l ]
B2DistributionICDFMormal
Mean |15 15
Stdev |15 15

] = o.01

= 11.51047819
Computes the Normal distribution's theoretical Inverse Cumulative Distribution Function (ICDF), that
is, given the cumulative probability between 0 and 1, and the distribution's parameters, the function
|| returns the relevant X value.

Probability |0.01

Probability

Formula result = 11.51047819

Help on this function I oK 1 [ Cancel

Figure 8: Function call for ICDF




Hypothesis Tests in a Theoretical Situation
This section illustrates how to continue using the Distributional Analysis tool to simplify theoretical

hypothesis tests.

Example: Sometimes, we need to obtain certain X values given a certainty and probability level for the
purposes of hypothesis testing. This is where the ICDF comes in handy. For instance, suppose a light bulb
manufacturer needs to test if its bulbs can last on average, 1,000 burning hours. If the plant manager
randomly samples 100 light bulbs and finds that the sample average is 980 hours with a standard
deviation of 80 hours, at a 5% significance level (two-tails), do the light bulbs last an average of 1,000

hours?

There are several methods to solve this problem, including the use of confidence intervals, Z-scores, and
p-values. For example, we are testing the null hypothesis Ho: Population Mean = 1,000 and the alternate
hypothesis Ha: Population Mean is NOT 1,000. Using the Z-score approach, we first obtain the Z-score
equivalent to a two-tail alpha of 5% (which means one tail is 2.5%, and using the Distributional Analysis
tool we get the Z = 1.96 at a CDF of 97.50%, equivalent to a one tail p-value of 2.5%). Using the
Distributional Analysis tool, set the distribution to Normal with a mean of zero and standard deviation of
one (this is the standard normal Z distribution). Then, compute the ICDF for 0.975 or 97.5% CDF, which
provides an X value of 1.9599 or 1.96 (Figure 9).

Using the confidence interval formula, we get:

S

urZ| —
(\/ﬁ j
80
1000£1.96 —
/100

1000+15.68
This means that the statistical confidence interval is between 984.32 and 1015.68. As the sample mean of

980 falls outside this confidence interval, we reject the null hypothesis and conclude that the true

population mean is different from 1,000 hours.
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Figure 9: Standard normal Z-score

A much quicker and simpler approach is to use the Distributional Analysis tool directly. Seeing that we
are performing a statistical sample, we first need to correct for small sampling size bias by correcting the
standard deviation to get:

S 80

—:—:8

Jn 100

Then, we can find the CDF relating to the sample mean of 980. We see that the CDF p-value is 0.0062,
less than the alpha of 0.025 one tail (or 0.50 two tail), which means we reject the null hypothesis and
conclude that the population mean is statistically significantly different from the 1,000 hours tested
(Figure 10).
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Figure 10: Obtaining p-values using Distributional Analysis tool

Yet another alternative is to use the ICDF method for the mean and sampling adjusted standard deviation

and compute the X values corresponding to the 2.5% and 97.5% levels. The results indicate that the 95%

two-tail confidence interval is between 984.32 and 1,015.68 as computed previously. Hence, 980 falls

outside this range, this means that the sample value of 980 is statistically far away from the hypothesized

population of 1,000 (that is, the unknown true population based on a statistical sampling test can be

determined to be not equal to 1,000). See Figure 11.
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Figure 11: Computing statistical confidence intervals

Note that we adjust the sampling standard deviation only because the population is large and we sample a
small size. However, if the population standard deviation is known, we do not divide it by the square root

of N (sample size).

Example: In another example, suppose it takes on average 20 minutes with a standard deviation of 12
minutes to complete a certain manufacturing task. Based on a sample of 36 workers, what is the probably

that you will find someone completing the task taking between 18 and 24 minutes?

Again, we adjust the sampling standard deviation to be 12 divided by the square root of 36 or equivalent

to 2. The CDF for 18 and 24 are 15.86% and 97.72% respectively, yielding the difference of 81.86%,



which is the probability of finding someone taking between 18 and 24 minutes to complete the task. See

Figure 12.
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Figure 12: Sampling confidence interval

Example: Sometimes, when the sample size is small, we need to revert to using the Student’s T
distribution. For instance, suppose a plant manager studies the life of a particular battery and samples 10
units. The sample mean is 5 hours with a sample standard deviation of 1 hour. What is the 95%

confidence interval for the battery life?

Using the T distribution, we set the degrees of freedom as n—1 or 9, with a mean location of 0 for a
standard T distribution. The ICDF for 0.975 or 97.5% (5% two tail means 2.5% on one tail, creating a
complement of 97.5%) is equivalent to 2.262 (Figure 13). So, the 95% statistical confidence interval is:
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Therefore, the confidence interval is between 4.29 and 5.71.

This tool generates the probability density function
(POF), cumulative distribution function (CDF) and
the Inverse COF (ICDF) of all the distributions in
Risk Simulator, including theoretical moments and

040,

Mean = 0.0000
Stdev = 1.1339
Skewness = 0.0000

Kurtesis = 1.2000

ICOF

probability chart. 0.35
0,304
Distribution T -
0.25
Lecation |ﬂ | 0.20
Degrees of Freedom |5 | 0.15
| | 0.0
| | 0.051
Type IcDF - | %%
—_
Formatting 0.000000 | CDF
Single Valus
Probabilty 0.975 |
) Range of Values
Lower Bound 0.025 |
|Jpper Bound 0.975 |
Step Size 95 |

Figure 13: Standard T distribution




Hypothesis Tests in an Empirical Simulation

This next example shows how two different forecasts or sets of data can be tested against one another to
determine if they have the same means and variances. That is, if the first distribution has a mean of 100,
how far away does the mean of the second distribution have to be such that they are considered
statistically different? The example illustrates two models (A and B) with the same calculations (see
Simulation Model worksheet) where the income is revenue minus cost. Both sets of models have the same
inputs and the same distributional assumptions on the inputs, and the simulation is run on the random
seed of 123456. Two major items are noteworthy. The first is that the means and variances (as well as
standard deviations) are slightly different. These differences raise the question as to whether the means

and variances of these two distributions are identical.

A hypothesis test can be applied to answer this first question. A nonparametric bootstrap simulation can
also be applied to test the other statistics to see if they are statistically valid. The second item of interest is
that the results from A and B are different although the input assumptions are identical and an overall
random seed has been applied (Figure 14). The different results occur because with a random seed
applied, each distribution is allowed to vary independently as long as it is not correlated to another

variable. This is a key and useful fact in Monte Carlo simulation.
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Figure 14: Simulation results

Running a Hypothesis Test
To run this model, simply:
1. Open the existing simulation profile by selecting Risk Simulator | Change Simulation
Profile. Choose the Hypothesis Testing profile.
2. Select Risk Simulator | Run Simulation or click on the Run icon.
3. After the simulation run is complete, select Risk Simulator | Tools | Hypothesis Test.

4. Make sure both forecasts are selected and click OK.

The report and results are provided in Figure 15. The results indicate that the p-value for the t-test is
higher that 0.05, indicating that both means are statistically identical and that any variations are due to
random white noise. Further, the p-value is also high for the F-test, indicating that both variances are also

statistically identical to one another.
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Figure 15: Hypothesis testing results

Running a Nonparametric Bootstrap Simulation

The preceding hypothesis test is a theoretical test and is thus more accurate than empirical tests (e.g.,
bootstrap simulation). However, these tests do not exist for other statistics; hence, an empirical approach
is required, namely, nonparametric bootstrap simulation. To run the bootstrap simulation, simply reset
and rerun the simulation; then, once the simulation is complete, click on Risk Simulator | Tools |
Nonparametric Bootstrap. Choose one of the forecasts (only one forecast can be chosen at a time when

running bootstrap simulation), select the statistics of interest and click OK (Figure 16).
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Figure 16: Nonparametric bootstrap simulation

The resulting forecast charts are empirical distributions of the statistics. By typing in 90 on the certainty
box and hitting Tab on the keyboard, the 90% confidence is displayed for each statistic. For instance, the
skewness interval is between 0.0452 and 0.2877, indicating that the value zero is outside this interval; that
is, at the 90% two-tail confidence (or significance of 0.10 two-tailed), model A has a statistically
significant positive skew. Clearly, the higher the number of bootstrap trials, the more accurate the results
(recommended trials are between 1,000 and 10,000). Think of bootstrap simulation in this way: Imagine
you have 100 people with the same exact model running the simulation without any seed values. At the
end of the simulations, each person will have a set of means, standard deviations, skewness, and kurtosis.
Clearly, some people with have exactly the same results while others are going to be slightly off, by virtue
of random simulation. The question is, how close or variable is the mean or any of these statistics? In
order to answer that question, you collect all 100 means and show the distribution and figure out the 90%
confidence level (Figure 17). This is what bootstrap does. It creates alternate realities of hundreds or
thousands of runs of the same model, to see how accurate and what the spread of the statistic is. This also

allows us to perform hypothesis tests to see if the statistic of interest is statistically significant or not.
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Figure 17: Bootstrap simulation’s forecast results



