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Box-Jenkins ARIMA Advanced Time Series

ROV Technical Papers Series: Volume 25

Theory

One very powerful advanced times-series forecasting tool is the ARIMA or Auto-Regressive
Integrated Moving Average approach, which assembles three separate tools into a comprehensive
model. The first tool segment is the autoregressive or “AR” term, which corresponds to the
number of lagged value of the residual in the unconditional forecast model. In essence, the
model captures the historical variation of actual data to a forecasting model and uses this
variation or residual to create a better predicting model. The second tool segment is the
integration order or the “I” term. This integration term corresponds to the number of
differencing the time seties to be forecasted goes through to make the data stationary. This
element accounts for any nonlinear growth rates existing in the data. The third tool segment
is the moving average or “MA” term, which is essentially the moving average of lagged
forecast errors. By incorporating this lagged forecast errors component, the model in essence
learns from its forecast errors or mistakes and corrects for them through a moving average
calculation.

The ARIMA model follows the Box-Jenkins methodology with each term representing
steps taken in the model construction until only random noise remains. Also, ARIMA
modeling uses correlation techniques in generating forecasts. ARIMA can be used to model
patterns that may not be visible in plotted data. In addition, ARIMA models can be mixed
with exogenous variables, but you must make sure that the exogenous variables have enough
data points to cover the additional number of periods to forecast. Finally, be aware that
ARIMA cannot and should not be used to forecast stochastic processes or time-series data
that are stochastic in nature—use the Stochastic Process module to forecast instead.

There are many reasons why an ARIMA model is superior to common time-series
analysis and multivariate regressions. The usual finding in time-seties analysis and multivariate
regression is that the error residuals are correlated with their own lagged values. This serial
correlation violates the standard assumption of regression theory that disturbances are not
correlated with other disturbances. The primary problems associated with serial correlation
are:

Regression analysis and basic time-series analysis are no longer efficient among the
different linear estimators. However, as the error residuals can help to predict current
error residuals, we can take advantage of this information to form a better prediction
of the dependent variable using ARIMA.

Standard errors computed using the regression and time-series formula are not
correct and are generally understated. If there are lagged dependent variables set as
the regressors, regression estimates are biased and inconsistent but can be fixed using

ARIMA.

Autoregressive Integrated Moving Average, or ARIMA(p,d,q), models are the extension of
the AR model that uses three components for modeling the serial correlation in the time-
series data. As previously noted, the first component is the autoregressive (AR) term. The
AR(p) model uses the p lags of the time series in the equation. An AR(p) model has the form:

It = aryri P oo
integration order corresponds to differencing the time series. I(1) means differencing the data

+ ayrp + e The second component is the integration (d) order term. Each




once; I(d) means differencing the data d times. The third component is the moving average (MA) term. The MA(q) model
uses the q lags of the forecast errors to improve the forecast. An MA(q) model has the form: y, = ¢ + brers + ... + byery
Finally, an ARMA(p,q) model has the combined form: y,= a7y + ... + apyp+ &+ bre + ... + byen,

Procedure

e Start Excel and enter your data or open an existing worksheet with historical data to forecast (Figure 1 uses the
example file Time-Series Forecasting).
o  Click on Risk Simulator | Forecasting | ARIM.A and select the time-series data.

e LEnter the relevant p, d, and ¢ parameters (positive integers only) and enter the number of forecast periods desired,
and click OK.

Results Interpretation

In interpreting the results of an ARIMA model, most of the specifications are identical to the multivariate regression
analysis (see Chapter 9, Using the Past to Predict the Future, in Modeling Risk, Second Edition, for more technical details
about interpreting the multivariate regression analysis and ARIMA models). However, there are several additional sets of
results specific to the ARIMA analysis as seen in Figure 1. The first is the addition of Akaike Information Criterion (AIC)
and Schwarz Criterion (SC), which are often used in ARIMA model selection and identification. That is, AIC and SC are
used to determine if a particular model with a specific set of p, d, and q parameters is a good statistical fit. SC imposes a
greater penalty for additional coefficients than the AIC, but generally the model with the lowest AIC and SC values should
be chosen. Finally, an additional set of results called the autocorrelation (AC) and partial autocorrelation (PAC) statistics
are provided in the ARIMA report.

For instance, if autocorrelation AC(1) is nonzero, it means that the series is first-order serially correlated. If AC dies
off more or less geometrically with increasing lags, it implies that the series follows a low-order autoregressive process. If
AC drops to zero after a small number of lags, it implies that the series follows a low-order moving-average process. In
contrast, PAC measures the correlation of values that are £ periods apart after removing the correlation from the
intervening lags. If the pattern of autocorrelation can be captured by an autoregression of order less than £, then the partial
autocorrelation at lag £ will be close to zero. The Ljung-Box Q-statistics and their p-values at lag £ are also provided, where
the null hypothesis being tested is such that there is no autocorrelation up to order £. The dotted lines in the plots of the
autocorrelations are the approximate two standard error bounds. If the autocorrelation is within these bounds, it is not
significantly different from zero at approximately the 5% significance level. Finding the right ARIMA model takes practice
and experience. These AC, PAC, SC, and AIC elements atre highly useful diagnostic tools to help identify the correct model
specification. Finally, the ARIMA parameter results are obtained using sophisticated optimization and iterative algorithms,
which means that although the functional forms look like those of a multivariate regression, they are not the same. ARIMA
is a much more computationally intensive and advanced econometric approach.

Auto ARIMA (Box-Jenkins ARIMA Advanced Time-Series)

Real Options Valuation £

Theory

This tool provides analyses identical to the ARIMA module except that the Auto-ARIMA module automates some of the
traditional ARIMA modeling by automatically testing multiple permutations of model specifications and returns the best-
fitting model. Running the Awufs-ARIM.A module is similar to running regular ARIMA forecasts. The differences being that
the p, d, ¢ inputs are no longer required and that different combinations of these inputs are automatically run and
compared.
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— ARIMA (Autoregressive Integrated Moving Average)

Regression Statistics

R-Sauared (Coefficient of Determination) Q7708 Akaike infornation Criterion (A1C) 14 2506
Adinsted R-Squared Q7373 Schwarz Chiterion (SC) 14,3500
Muitinie R iMuwitinie Correlation Coefficient) Q8779 Log Likelihood -133.3807
Standard Ervor of the Estimates (SEY) 060 9368 Durbin-Watson statistic 23376
Obsenations 19 Number of ferations i)

Autoregressive Infegrated Moving Average(ARIMAN, A models are the extension of the AR mode! that use three components for modeling the serial correlation inithe
time seties data. The first component is the autoregresshveld R tenm. The AR model uses the p lags of the time series in the equation. An AR model has the form:
Yill=ai ) nae 0+ raipMibpl+eifl. The second companent is the Integration(d) arder term. Each integration arder corresponds to differencing the time serigs. 1f1) meahs
differencing the data once. Iid) means diferancing the data o tirmes. The third component s the moving average(d) term. The MArQ) model Wses the q lags of the forecast
arrors fo improve the forecast, An MA(G) model has the form: vill=e(+ b)) %eft 1)+ + b eitq) Finaily, an ARMA(p,q) model has the combined form: yill=a(T)myk
i+ +ap e+ bri) e 1)+ +big *etq).

The R-Squated or Coefficient of Determination indicates that of the wariation In the dependent variable can be expiained and aecounted for by the Independeant vatiables
In this regression analysis, However, in a multiple regression, the Adiusted R-Squared takes into account the existence of additional independent vatiabias OF ¥eQressors
and adiusts this R-Sqguared vaile fo a more accwrate view the regression's explanatons power. Hence, anly of the variation in the dependent vatiable can he expizined by
the regressors. However, under sorme clreumstances, ittends to be unreliable.

The Muitinie Correlation Coefiicient (Muitinle R measures the correiation between the actual dependent wariable (v) and the estimated or fitted [(¥) based on the
regression equation. This Is aiso the square root of the Coefiicient of Determination (R-Squared).

The Standard Error of the Estimates (SEY) describes the dispersion of data points above the beiow the regression fine or piane. This vaile Js used as part of the
calcniation to obtaln the confidence intersal of the estimates later.

The AIC and 5C are often used in model sefection. 5T Imposes a greater penaily for additional coefficients. Generaliy, the user showid select & model with the lowest
vaile of the AIC and SC.

The Ourbin-Watson statistic measures the setial correiation in the residuais. Generaliy, DW lass thah 2 implies positive serial corraiabion.

Regression Results

Intercept ¥i-d)
Coefficients T16.2328 0.98935
Standiard Error 179.9049 01309
FStatistic 06466 70604
p-liaive 0.5265 0.0000
Lower 5% -P63.2333 07434
Upper 95% 4958589 1. 2656
Degrees of Freedom Hypothesis Test
Degrees of Freedom for Regression 1 Critical bStatistic (99% confidence with of of 17) 526367
Degrees of Freedom for Residual 17 Critical F5tatistic (95% confidence with of of 17) 24086
Total Degrees of Freedom 18 Critical -Statistic (90% conficence with of of 17) 17347

The Coefficients provide the estimated regression Intercept and siopes. For instance, the coefficients are the b values in the folfowing regression equation: v = bl +
PEDXT) + BI2X2) + .+ bBinlX(n). The Standard Errors measire how accurale the predicled Coefiicients are, and the tStatistics are the ratios of each predicted
Coefiicient fo its Standard Errfor.

The t5tatistic Js used in hypothesis testing, where we sef the nuil hypothesis (Hal such that the real mean of the Coefficient = 0, and the aifernate hvpothesis (Ha) such that
the real mean of the Coefficient Is not equal to 0. 4 kest s is performed and the calculated LStatistic Js compared to the chitical values atthe relevant Degrees of Freedam
for Residual The test ks veny important as it calcwiates i each of the coeffients is statististically significant in the presence of the other regressors. This meansa that the
test stalisticaly verlfies whether a Yegressor of independent variable sholid remain In the regression or it showid be dropped,

The Coefficient is statisticaly sighificant if its calcwiated t5tatistic exceeds the Critical FStalistic at the refevant degrees of freedorn (df). The three main confidence levels
waed to test for significance are 90%, 93% and 99%. If a Coefficient's LStalistic exceeds the Critical fevel, 1t Js considered statisticaily significant. Aternatively, the p-lfalue
calcliates each LStatistic's probabilly of occurrence, which means that the smalier the p-l/aiue, the maore sighificant the Coefficiant The usual critical levels for the p-
laive gre 0.04, 0.05, and 0.10, corresponding to the 99%, 83%, ahd 99% confidence fevels.

The Coefficients with thelr p-Values highlighted in bive Indicate that they are stalistically sighificant at the 95% confidence or 0.05 alpha level, while those highiighted in
ted indicate that they are not statistically significant at any of the aipha levels.

Analysis of Variance

Sums aof Mean of .

Squares Suares F-Statistic  P-value Hypothesis Test
Regression 4622250685 46822280889 O7 1604 0.0000 Critical F-stabistic (99% confidence with of of 1 and 17) 82997
Residual 13823368327 819740325 Critical F-statistic (95% conficence with of of 1 and 17) 443132
Total GO7L7 766244 47641521044 Critical F-statistic ({90% confidence with of of 1 and 17) 20282
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The Analvsis of Variance (ANDIAA) table provides an Flest of the regression model's overall statistical sighificance. Instead of fooking at Individual regressors as in the
test the Flest foois at ali the estimated Coefficient's stalistical properties. The F-statistic §s caicliated as the ratio of the Regression's Weah of Squares to the Residual's
Mean of Squares. The humeratar measires how much of the regression s explained, while the denaminator measures how rmuch Is unexpizined. Hence, the larger the -
statistic, the more sighificant the modeal. The corresponding PV alue is calculated to test the null ivpothesis (Ho) whete all the Coefiicients are simultaheously equal to
Zevo, versls the alternate hypothesis (Ha) that they are alf simultaneously different frorn Zeto, indicating a sighlficant overall regression model if the P alue s simaller
than the 0.04, 0.03, ar 010 aipha significance, then the regression Is sighificant. The same approach can be applied o the F-statistic.

Figure 1. Box Jenkins ARIMA Forecast Report (continues)

© Copyright 2005-2012. All rights reserved. www.realoptionsvaluation.com Page | 3



Autocorrelation

Time Lag AC PAC LBound UBound Q-Stat Prok AL PAC

1 06871 06571 (04472 0.4472 10 4657 0.0012

2 0.4850 0.0244 (0447Z) 04472 159865 0.0003 =3 PR |
3 0.5045 0.3083 (04472 0.4472 223333 0.0001 ] : !
4 04334 (00512 (04472 0.4472 27 3303 0.0000 : %] A
5 04720 (0.3262) (0.4472) 04472 284730 0.0000 : | p0
3 0.M8a5 (014000 (04472 0.4472 251835 0.0001 I W =
7 00243 00334 (0.4472) 04472 282032 0.0002 : : g
] (0.0250) 0.0266 (0.4472) 04472 282316 0.0004 : : : :
q (02093 (01544) (04472 0.4472 29 9397 0.0004 : : : :
10 (0.3074) (0.1478) (0.4472) 04472 344800 0.0002 : g : : E :
11 (0 2E2E) (0 OREE) (0.4472) 04472 381670 00001 : = : : i :
12 (02734 0.0529 (04472 0.4472 42 4282 0.0000 ‘0 ; ;
13 (03774 (009413 (04472 0.4472 518000 0.0000 = bog o
14 (0.4018) (0L0644) (04472 0.4472 54 7515 0.0000 i S I
15 (02098 (0001 2 (04472 0.4472 737471 0.0000 o I ; ;
16 (02303 0.0428 (04472 0.4472 50,5003 0.0000 g ; ;
17 (02489 0.0064 (04472 0.4472 931562 0.0000 i : :
18 (01652) 0.0592 (04472 04472 1040461 0.0000 g o g

If altocarrelation AC(T) Is nonzero, it means that the series Js first order serlally correlated. I ACIK) dies off more or feas geomelricaily with increaaing fag , t imphies that
the seres foliows g Jow-order aultoregressive process. I ACK) drops to Zero after a simall number of jags, It impiies that the series foliows a low-order moving-average
process, Partial correlation PACIEK) measires the correlation of values that are & periods apart after rernoving the correlalion frorn the Intenvening fags. If the paltern of
autocorreiation can be captured by an autoregression of order fess than &, then the pattial autocorreiation at fag & will be ciose to zero. Ljung-Box Gratatistics and thelr p-
values at lag & has the nuil hvpothesis that there Js no autocorrelation up to order k. The dofted iines in the plots of the awtocorreiations are the approximate two standard
aftor bounds. Ifthe awtocorrelation Ja within these bounds, itis not sighfficantly different froim zero at fapproximately) the 5% significance level

Forecasting
Period Actual () Forecast (F) Error (E)
£54.1000 7933540 (209 2540) Actual vs. Predicted
2 765.4000 £94 3043 71.0357
3 892.3000 8737021 18.5879 2000 0000
4 885.4000 999 2706 (113 8708) [
:)ul 5 £77.0000 992 4430 (315 .4430) 2,500.0000
[ 1,008 6000 7862296 2203704 2 000.0000
: 7 1,122.1000 11123713 97287 T
O 8 1,163.4000 1,226 6535 (63.2595) 1,500.0000
o 9 993.2000 1,267 5262 (274 3262) 1,000,000
.; 10 1,312.5000 1,0991119 2133881
[3e] 1 1,545 3000 1 M50818 1302382 500.0000
12 1,596 2000 16454132 (49.2192) . ——————
g 13 1,260.4000 1,695.7852 [435.3852) 1 3 5 7 =1 11 13 15 17 19 M
! 3= 14 1,735.2000 1,363.5084 371 BIE
15 2,02.7000 1,833.3267 1963733 — Actual Farecast
P 16 2,107 8000 21247368 (16.9368)
17 1,650.3000 22020173 (551 7173) Prediction Errors (E)
74 18 2,304 4000 17433175 555.0825
c 19 2,633.4000 2,395.5546 2432 8454 a00 0000
O 20 27280397
:; | 28157434 00,0000
Q— 400.0000 J‘f\\
O 200.0000 f\
N SN NI N
TG (2000000 1/y 3 5/1 ?\9/ 11 \\13/ 15 \1?} 19 21
| v N ]
ﬂ.J (400.0000) ¥
ﬁ (600.0000)
(800.0000)

Figure 1. Box Jenkins ARIMA Forecast Report (continued)

© Copyright 2005-2012. All rights reserved. www.realoptionsvaluation.com Page | 4



Procedure

e Start Excel and enter your data or open an existing worksheet with historical data to forecast (the illustration
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shown in Figure 2 uses the example file .Advanced Forecasting Models in the Examples menu of Risk Simulator).

e In the Auto ARIMA worksheet, select Risk Simulator | Forecasting | AUTO-ARIMA. You can also access the
method through the Forecasting icons ribbon or right-clicking anywhere in the model and selecting the forecasting
shortcut menu.

e (Click on the link icon and link to the existing time-series data, enter the number of forecast periods desired, and

click OK.

| A B c D E E G H J K 2 M N (o] B Q R S
1
2 Sample Historical Time- z ﬁ'
i " Series Data Box-Jenkins ARIMA Forecasts I Aurtoregressve otegrated Mowing vereae
4 M1 M2 M3 AR;;AA .mfv&n;m modeling technique |
5 138.90 28670  289.00 Autoregressive Integrated Moving Average (ARIMA) sy O Mot i e
6 139.40 287.80 290.10 forecasts apply advanced econometric modeling tecnigues ﬁ?f;’_f‘?ﬁé@ﬁi}’;‘?i'?.ﬁfu".,ﬁ',"s":\z"'“’
7 13970 28910 29130 to forecast time-series data by first back-fitting to historical revenues, gross domestic product)
8 139.70 29010 292.30 data and then forecasting the future. Advanced knowledge of Thiné Setiis Voriable mj‘ﬁ—‘ﬁ
9 140.70 29230 294.50 econometrics is required to properly model ARIMA. Please
10 14120 29390  296.10 see the ARIMA example Excel model for more details. However, Exogenous Varizble =]
| 141.70 29530 29740 to get started quickly, following the instructions below: Autorearessive Order AR(p) 1l
12 141.90 296.40 298.50 -
13 14100 29650  298.50 1. Risk Simulator | Forecasting | ARIMA pafteencing Qrdceid) -
14 140.50 296.60  298.60 2. Click on the Time-Series Variable link Moving Average Order MA(q) []=
15 140.40 297.20 299.20 icon and select the area B5:B440 Masirian ke ation 10l
16 14000 29780  299.80 3. Try different P, D, Q values and
ETd 14000 29830 30030 select a Forecast Perod of choice Forecast Periods 5%
18 139.90 298.50 300.50 (e.g.. 1,0,0 for PDQ and 5 for Forecast) Backoast ]
19 139.80 29920 301.30 4. Click OK to run ARIMA and review the
20 139.60 30010 302.20 ARIMA report for details of the results
21 139.60 301.00 303.00
22 139.60 30220 304.30 b
% 140.20 304.20 306.40
24 14130 306.80  309.20 [R] Auto ARIMA
25 141.20 30820 310.70 — —— : AUTO-ARIMA Models
26 140.90 303.60 312.20 unf:;r PDQ D;ﬂranslmt\gnufaﬁ?mlm %
27 140.90 311.00 313.80 best fit using Adjusted R-Squared Akaike Proper ARIMA modeling requires testing of the autoregressive and moving
28 140.70 312.30 315.30 ;ﬂﬂ:‘?g‘vg;‘s‘?”"“a"ﬂ ranks them i HH average of the errors on the time-series data, in order to calibrate the correct
29 141.10 314.20 317.30 2 St s T PDQ inputs. Nonetheless, you can use the AUTO ARIMA forecasts to automatically
30 141.60 316.60 320.00 Time Series Variable ]ES:EMD E test all possible combinations of the most frequently occurring PDQ values to find the
k| 14190 31610 321.70 Ernprais Varle I*—E best-fitting ARIMA model. To do so. following these steps:
32 14210 319.90 32380
33 142.70 32230 326.50 Maximum lterations 10015 1. Risk Simulator | Forecasting | AUTO ARIMA
34 142.90 324.10 328.70 Forecast Periods 52 2. Click on the Time-Series Variable link
g5 14290 32570  330.60 icon and select the area B5:B440
36 14350 32760  332.60 Hackrest 0 3. Click OK to run ARIMA and review the
r 143.80 329.30 33450 ARIMA report for details of the results
38 14410 33120 336.60 "
39 144.80 333.50 339.00 \ .
40 14620 33550 34100 P Real Options
1 14520 33760  343.20 "V Valuatwn
42 14570 34020  346.20 Sy doplonislatior 43

Figure 2. AUTO-ARIMA Module

ARIMA and AUTO ARIMA Note

For ARIM.A and Auto ARIM.A, you can model and forecast future periods either by using only the dependent variable (Y),
that is, the Time Series Variable by itself, or you can insert additional exogenous variables (X7, Xp,..., X)) just as in a
regression analysis where you have multiple independent variables. You can run as many forecast periods as you wish if you
only use the time-series variable (Y). However, if you add exogenous variables (X), be sure to note that your forecast
periods are limited to the number of exogenous variables’ data periods minus the time-series variable’s data periods. For
example, you can only forecast up to 5 periods if you have time-series historical data of 100 periods and only if you have
exogenous variables of 105 periods (100 historical periods to match the time-series variable and 5 additional future periods

of independent exogenous variables to forecast the time-series dependent variable).
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