Heal Options
W Valuation

I

www.realoptionsvaluation.com

In This Issue

1. Explore Risk
Simulator’s regression
and forecasting diagnostic
tool

. Learn about common
violations in forecasting
and regression analysis

. Discover the significance
of outliers

. Find out about
autocorrelation

“What tool can you use to
determine the econometric
properties of your data?”

Contact Us

Real Options Valuation, Inc.

4101F Dublin Blvd., Ste. 425,
Dublin, California 94568 U.S.A.

admin@realoptionsvaluation.com
www.realoptionsvaluation.com
WWW.rovusa.com

Data Diagnostic

ROV Technical Papers Series: Volume 39

The regression and forecasting diagnostic tool is the advanced analytical tool in Risk
Simulator used to determine the econometric properties of your data. The diagnostics
include checking the data for heteroskedasticity, nonlinearity, outliers, specification errors,
micronumerosity, stationarity and stochastic properties, normality and sphericity of the errors,
and multicollinearity. Each test is desctibed in more detail in their respective reports in the
model.

Procedure

Open the example model (Risk Simulator | Examples | Regression Diagnostics), go to the
Time-Series Data worksheet, and select the data including the variable names (cells
C5:H55).

o Click on Risk Simulator | Tools | Diagnostic Tool.

Check the data and select the Dependent 1 ariable Y from the drop-down menu. Click OK when
finished (Figure 1).
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Figure 1. Running the Data Diagnostic Tool

A common violation in forecasting and regression analysis is heteroskedasticity; that is,
the variance of the errors increases over time (see Figure 2 for test results using the diagnostic
tool). Visually, the width of the vertical data fluctuations increases or fans out over time, and,
typically, the coefficient of determination (R-squared coefficient) drops significantly when
heteroskedasticity exists. If the variance of the dependent variable is not constant, then the




Diagnostic Results

— Heteroskedasticity Micronumerosity Outliers Nonlinearity
W-Test  Hypothesis Test Approximation M atural M atural Mumber of Monlinear Test Hypothesis Test
Yariable p-value result result Loweer Bound Lpper Bound Potential Outliers n-walue result
b no problems -7.86 671.70 2
variable X1 0.2843 Homoskedastic no problems -21377.95 E4713.03 3 0.2458 linear
variable X2 0.3371  Homoskedastic no problems 7747 44593 2 0.0335 nonlinear
variable X3 0.3849  Homoskedastic no problems 8.7 15,69 3 0.0305 nonlinear
variable X4 0.3086 Homoskedastic no problems -295.96 628.21 4 0.9298 linear
variable X5 0.2495  Homoskedastic no problems 3.35 9.38 3 0.2727 linear

Figure 2. Results from Tests of Outliers, Heteroskedasticity, Micronumerosity, and Nonlinearity

error’s variance will not be constant. Unless the heteroskedasticity of the dependent variable is pronounced, its effect will
not be severe: The least-squares estimates will still be unbiased, and the estimates of the slope and intercept will either be
normally distributed if the errors are normally distributed or at least normally distributed asymptotically (as the number of
data points becomes large) if the errors are not normally distributed. The estimate for the variance of the slope and overall
variance will be inaccurate, but the inaccuracy is not likely to be substantial if the independent-variable values atre
symmetric about their mean.

If the number of data points is small (micronumerosity), it may be difficult to detect assumption violations. With small
sample sizes, assumption violations such as non-normality or heteroskedasticity of variances are difficult to detect even
when they are present. With a small number of data points, linear regression offers less protection against violation of
assumptions. With few data points, it may be hard to determine how well the fitted line matches the data, or whether a
nonlinear function would be more appropriate. Even if none of the test assumptions are violated, a linear regression on a
small number of data points may not have sufficient power to detect a significant difference between the slope and zero,
even if the slope is nonzero. The power depends on the residual error, the observed variation in the independent variable,
the selected significance alpha level of the test, and the number of data points. Power decreases as the residual variance
increases, decreases as the significance level is decreased (i.e., as the test is made more stringent), increases as the variation
in observed independent variable increases, and increases as the number of data points increases.

Values may not be identically distributed because of the presence of outliers. Outliers are anomalous values in the data.
Outliers may have a strong influence over the fitted slope and intercept, giving a poor fit to the bulk of the data points.
Outliers tend to increase the estimate of residual variance, lowering the chance of rejecting the null hypothesis, that is,
creating higher prediction errors. They may be due to recording errors, which may be correctable, or they may be due to
the dependent-variable values not all being sampled from the same population. Apparent outliers may also be due to the
dependent-variable values being from the same, but non-normal, population. However, a point may be an unusual value in
either an independent or dependent variable without necessarily being an outlier in the scatter plot. In regression analysis,
the fitted line can be highly sensitive to outliers. In other words, least squares regression is not resistant to outliers, thus,
neither is the fitted-slope estimate. A point vertically removed from the other points can cause the fitted line to pass close
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to it, instead of following the general linear trend of the rest of the data, especially if the point is relatively far horizontally
from the center of the data.

However, great care should be taken when deciding if the outliers should be removed. Although in most cases when
outliers are removed, the regression results look better, a priori justification must first exist. For instance, if one is
regressing the performance of a particular firm’s stock returns, outliers caused by downturns in the stock market should be
included; these are not truly outliers as they are inevitabilities in the business cycle. Forgoing these outliers and using the
regression equation to forecast one’s retitement fund based on the firm’s stocks will yield incorrect results at best. In
contrast, suppose the outliers are caused by a single nonrecurring business condition (e.g., merger and acquisition) and such
business structural changes are not forecast to recur, then these outliers should be removed and the data cleansed prior to
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running a regression analysis. The analysis here only identifies outliers and it is up to the user to determine if they should
remain or be excluded.

Sometimes, a nonlinear relationship between the dependent and independent variables is more appropriate than a
linear relationship. In such cases, running a linear regression will not be optimal. If the linear model is not the correct form,
then the slope and intercept estimates and the fitted values from the linear regression will be biased, and the fitted slope
and intercept estimates will not be meaningful. Over a restricted range of independent or dependent variables, nonlinear
models may be well approximated by linear models (this is, in fact, the basis of linear interpolation), but for accurate
prediction, a model appropriate to the data should be selected. A nonlinear transformation should first be applied to the
data before running a regression. One simple approach is to take the natural logarithm of the independent variable (other
approaches include taking the square root or raising the independent variable to the second or third power) and run a
regression or forecast using the nonlinearly transformed data.

Another typical issue when forecasting time-series data is whether the independent-variable values are truly
independent of each other or are actually dependent. Dependent variable values collected over a time series may be
autocorrelated. For serially correlated dependent-variable values, the estimates of the slope and intercept will be unbiased,
but the estimates of their forecast and variances will not be reliable and, hence, the validity of certain statistical goodness-
of-fit tests will be flawed. For instance, interest rates, inflation rates, sales, revenues, and many other time-series data are
typically autocorrelated, where the value in the current period is related to the value in a previous period, and so forth
(clearly, the inflation rate in March is related to February’s level, which, in turn, is related to January’s level, etc.). Ignoring
such blatant relationships will yield biased and less accurate forecasts. In such events, an autocorrelated regression model or
an ARIMA model may be better suited (Risk Simulator | Forecasting | ARIMA). Finally, the autocorrelation functions of a
series that is nonstationary tend to decay slowly (see nonstationary report in the model).

If autocorrelation AC(1) is nonzero, it means that the series is first-order serially correlated. If AC(k) dies off more or
less geometrically with increasing lag, it implies that the series follows a low-order autoregressive process. If AC(k) drops to
zero after a small number of lags, it implies that the series follows a low-order moving-average process. Partial correlation
PAC(k) measures the correlation of values that are k periods apart after removing the correlation from the intervening lags.
If the pattern of autocorrelation can be captured by an autoregression of order less than k, then the partial autocorrelation
at lag k will be close to zero. Ljung—Box Q-statistics and their p-values at lag k have the null hypothesis that there is no
autocorrelation up to order k. The dotted lines in the plots of the autocorrelations are the approximate two standard error
bounds. If the autocorrelation is within these bounds, it is not significantly different from zero at the 5% significance level.

Autocorrelation measures the relationship to the past of the dependent Y variable to itself. Distributive lags, in
contrast, are time-lag relationships between the dependent Y variable and different independent X variables. For instance,
the movement and direction of mortgage rates tend to follow the Federal Funds Rate but at a time lag (typically 1 to 3
months). Sometimes, time lags follow cycles and seasonality (e.g., ice-cream sales tend to peak during the summer months
and are therefore related to last summer’s sales, 12 months in the past). The distributive lag analysis (Figure 3) shows how
the dependent variable is related to each of the independent variables at various time lags, when all lags are considered
simultaneously, to determine which time lags are statistically significant and should be considered.

Another requirement in running a regression model is the assumption of normality and sphericity of the error term. If

the assumption of normality is violated or outliers are present, then the linear regression goodness-of-fit test may not be
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the most powerful or informative test available. Choosing the most appropriate test could mean the difference between
detecting a linear fit or not. If the errors are not independent and not normally distributed, it may indicate that the data
might be autocorrelated or suffer from nonlinearities or other more destructive errors. Independence of the errors can also
be detected in the heteroskedasticity tests (Figure 4).

The normality test on the errors performed is a nonparametric test, which makes no assumptions about the specific
shape of the population from where the sample is drawn, allowing for smaller sample datasets to be analyzed. This test
evaluates the null hypothesis of whether the sample errors were drawn from a normally distributed population versus an
alternate hypothesis that the data sample is not normally distributed. If the calculated D-statistic is greater than or equal to

the D-critical values at various significance values, then reject the null hypothesis and accept the alternate hypothesis (the
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Autocorrelation

Time Lag AL PAC Lawer Bound Upper Bound G- Stat Frob
0.nsan 0.nsan 02878 02826 01786 06726
01213 -01281 -0.2828 0.2828 0.0754 06140 pAC
3 0.0590 0.0756 -0.2828 02828 11679 07607 " |
4 0.2423 0.2232 -0.2828 0.2828 4.4865 03442 | |
4 0.00BT  -0.0078 -0.2828 0.2828 4.4590 04814 | |
fi -N2R54  -02344 -078278 07828 86516 01941 | |
7 0.0814 0.08309 -0.2828 0.2828 0.0524 0.24809 | |
a 00634 00442 -0.2828 02828 03012 03175 | |
q 0.0204 0.0673 -0.2828 0.2828 9.3276 0.4076 | |
10 -0.0190  0.0865 -0.2828 0.2828 93512 04931 | |
11 0.1035 0.0790 -0.2828 0.2828 10.0648 0.5246 | |
12 01658 0.0878 -0.2828 0.2828 11.8468 0.4500 | |
13 -0.0524  -0.0430 -0.2828 0.2828 121394 05162 | |
14 -0.2060  -0.2523 -0.2828 0.2828 151738 0.3664 | |
15 01782 0.2089 -0.2828 0.2828 17.6315 0.2881 | |
15 01022 -0.2591 -0.2828 0.2828 18,3296 0.3050 . |
17 -0.0861 0.0808 -0.2828 0.2828 18.8141 03335 | |
18 0.0418 01887 -0.2828 0.2828 19.0558 0.3884 | |
19 0.0869  -0.082 -0.2828 0.2828 19.6894 0.4135 ' \
0 -na0al -0.0269 02878 02826 19 B9GA 04770
Distributive Lags
P Values of Distributive Lag Periods of Each Independent Variable
“ariable 1 2 3 4 5 B T g 9 10 11 12
®1 0.8467 0.2045 0.3336 0.9105 0.9757 04020 08205 01267 0543 0.9110 07485 04016
w2 0.60TT 0.9800 0.8422 0.2881 0.0638 00032 08007 01551 04823 01128 0.0519  0.4383
w3 0.7304 0.2296 0.2741 08372 0.0808 0.0464 08355 00545  0ES28 0.73254 05083 03500
W 0.0061 0.6739 07932 07719 06748 08627 05565 09046 05726 0.6304 04812 04707
w5 01591 0.2032 0.4123 0.5589 06416 03447 08190 09740 05185 0.2858 01489 07794
Figure 3. Autocorrelation and Distributive Lag Results
Test Result
. Errors Relative Observed Expected 0-E
Regression Error Average Q.00 Frequency
Standard Deviation of Errors f41.53 -29.04 0.02 002 0.0612 -0.0412
I Statistic Q026 -202.53 0.0z .04 0.0766 -0.0366
0 Critical at 1% Q4135 -186.04 0.0z 0.06 0.0545 -0.0245
0 Critical at 5% Q4225 17447 0.0z 0.08 04087 -0.02497
O Criticarl at 10% 01455 -162.{3 0.0z a4a 04265 -0.0265
Nuli Hypothesis: The erfors are hormally dlstriblted. -181.62 0.0z afz a4z72 -0.0072
-T60.29 0.0z af4 Q{299 a.a109
Conclusion: The errors are normally distributed at the -143.40 .02 ofg 01526 Qo074
1%; alpha level. -135.092 0.0z o4& 04637 Q.0163
-133.81 0.0z 020 a4727 Q.0z73
-120.76 0.0z a2z 049732 Q0227
12042 0.0z 024 0.{5985 00415

Figure 4. Test for Normality of Errors

errors are not normally distributed). Otherwise, if the D-statistic is less than the D-critical value, do not reject the null
hypothesis (the errors are normally distributed). This test relies on two cumulative frequencies: one derived from the
sample dataset and the second from a theoretical distribution based on the mean and standard deviation of the sample data.
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Sometimes, certain types of time-series data cannot be modeled using any other methods except for a stochastic
process, because the underlying events are stochastic in nature. For instance, you cannot adequately model and forecast
stock prices, interest rates, price of oil, and other commodity prices using a simple regression model because these variables
are highly uncertain and volatile, and do not follow a predefined static rule of behavior; in other words, the process is not
stationary. Stationarity is checked here using the Runs Test, while another visual clue is found in the Autocorrelation report
(the ACF tends to decay slowly). A stochastic process is a sequence of events or paths generated by probabilistic laws. That
is, random events can occur over time but are governed by specific statistical and probabilistic rules. The main stochastic
processes include random walk or Brownian motion, mean reversion, and jump diffusion. These processes can be used to
forecast a multitude of variables that seemingly follow random trends but are restricted by probabilistic laws. The process-
generating equation is known in advance, but the actual results generated is unknown (Figure 5).
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Stochastic Process

Statistical Summary

The following are the estimated pararneters for 3 stochastic process given the data provided. It is up to you to determine if the probability of fit
(simnilar to & goodness-of-fit computation) is sufficient to warrant the use of a stochastic process forecast, and if so, whether it is a random
walk, mean-reversion, or a jump-diffusion model, or combinations thereof. In choosing the right stochastic process model, you will have to rely
on past experiences and & prior’ economic and financial expectations of what the underlying data set is best represented by. These parameters

can be entered into a stochastic process forecast (Simulation | For ting | Stochastic Pr.
Periodic
Oriit Rate -1.45% Rewersion Rate  282.89% Jurmp Rate 20.41%
Volatiity  85.04% Long-Tern lValue 32772 Jurnp Size 237.89
FProbabiliy of stochastic model it 46.45%
A high fit means a stochastic mode! is belter than conventional models.
Runs 20 Standard Normal  -1.7324
FPoaltive 25 Flfalve (1-tail) Q0416
Negative 23 Pl aive (2-ai) Q.08332
Expected Run 26

A low p-vaiue (below 010, 0.05, 0.04) means that the sequence is ot randorm and hence suffers from stationanily problems, and an ARIMA
rodel might be more appropriale. Conversely, higher p-values Indicate randomness and stochastic process models might be appropriate.

Figure 5. Stochastic Process Parameter Estimation

The random walk Brownian motion process can be used to forecast stock prices, prices of commodities, and other
stochastic time-series data given a drift or growth rate and volatility around the drift path. The mean-reversion process can
be used to reduce the fluctuations of the random walk process by allowing the path to target a long-term value, making it
useful for forecasting time-series variables that have a long-term rate such as interest rates and inflation rates (these are
long-term target rates by regulatory authorities or the market). The jump-diffusion process is useful for forecasting time-
series data when the variable can occasionally exhibit random jumps, such as oil prices or price of electricity (discrete
exogenous event shocks can make prices jump up or down). These processes can also be mixed and matched as required.

A note of caution is required here. The stochastic parameters calibration shows all the parameters for all processes and
does not distinguish which process is better and which is worse or which process is more appropriate to use. It is up to the
user to make this determination. For instance, if we see a 283% reversion rate, chances are a mean-reversion process is
inappropriate; or a very high jump rate of, say, 100% most probably means that a jump-diffusion process is probably not
appropriate, and so forth. Further, the analysis cannot determine what the vatiable is and what the data source is. For
instance, is the raw data from historical stock prices or is it the historical prices of electricity or inflation rates or the
molecular motion of subatomic particles, and so forth. Only the user would know such information, and, hence, using «
priori knowledge and theory, be able to pick the correct process to use (e.g., stock prices tend to follow a Brownian motion
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random walk whereas inflation rates follow a mean-reversion process, or a jump-diffusion process is more appropriate
should you be forecasting price of electricity).

Multicollinearity exists when there is a linear relationship between the independent variables. When this occurs, the
regression equation cannot be estimated at all. In near collinearity situations, the estimated regression equation will be
biased and provide inaccurate results. This situation is especially true when a step-wise regression approach is used, where
the statistically significant independent variables will be thrown out of the regression mix earlier than expected, resulting in
a regression equation that is neither efficient nor accurate. One quick test of the presence of multicollinearity in a multiple

regression equation is that the R-squared value is relatively high while the t statistics are relatively low.
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Another quick test is to create a correlation matrix between the independent variables. A high cross correlation

= | indicates a potential for autocorrelation. The rule of thumb is that a correlation with an absolute value greater than 0.75 is

indicative of severe multicollinearity. Another test for multicollinearity is the use of the Variance Inflation Factor (VIEF),

obtained by regressing each independent variable to all the other independent variables, obtaining the R-squared value, and

calculating the VIF. A VIF exceeding 2.0 can be considered as severe multicollinearity. A VIF exceeding 10.0 indicates
destructive multicollinearity (Figure 6).

Correlation Matrix

CORRELATION 2 K3 x4 bt

H1 0.333 0.859 0.242 0.237
"2 10000 0.249 0,319 0120
"3 1000 0196 0227
4 10000 0.290

Variance Inflation Factor

WIF K2 X3 x4 bt
H1 112 1246 108 1.08
H2 Bs 114 111 1.
H3 [s - 1.04 1.05
Ha s 1.04

Figure 6. Multicollinearity Errors

The correlation matrix lists the Pearson’s product moment correlations (commonly referred to as the Pearson’s R)
between variable pairs. The correlation coefficient ranges between —1.0 and + 1.0, inclusive. The sign indicates the
direction of association between the variables, while the coefficient indicates the magnitude or strength of association. The
Pearson’s R only measures a linear relationship and is less effective in measuring nonlinear relationships.

To test whether the correlations are significant, a two-tailed hypothesis test is performed and the resulting p-values are
computed. P-values less than 0.10, 0.05, and 0.01 are highlighted in blue to indicate statistical significance. In other words, a
p-value for a correlation pair that is less than a given significance value is statistically significantly different from zero,
indicating that there is a significant linear relationship between the two variables.

The Pearson’s product moment correlation coefficient (R) between two variables (x and ) is related to the covariance (¢cor)

measure whete

X<y
The benefit of dividing the covariance by the product of the two variables’ standard deviations (s) is that the resulting
correlation coefficient is bounded between —1.0 and +1.0, inclusive. This parameter makes the correlation a good relative
measure to compare among different variables (particularly with different units and magnitude). The Spearman rank-based
nonparametric correlation is also included in the analysis. The Spearman’s R is related to the Pearson’s R in that the data is
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first ranked and then correlated. The rank correlations provide a better estimate of the relationship between two variables
when one or both of them is nonlinear.

It must be stressed that a significant correlation does not imply causation. Associations between variables in no way
imply that the change of one variable causes another variable to change. Two variables that are moving independently of
cach other but in a related path may be correlated but their relationship might be spurious (e.g., a correlation between
sunspots and the stock market might be strong, but one can surmise that there is no causality and that this relationship is

purely spurious).
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