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Many algorithms exist to run optimization and many different procedures exist when 
optimization is coupled with Monte Carlo simulation. In Risk Simulator, there are three 
distinct optimization procedures and optimization types as well as different decision variable 
types. For instance, Risk Simulator can handle Continuous Decision Variables (1.2535, 0.2215, 
and so forth), Integer Decision Variables (e.g., 1, 2, 3, 4 or 1.5, 2.5, 3.5, and so forth), Binary 
Decision Variables (1 and 0 for go and no-go decisions), and Mixed Decision Variables (both 
integers and continuous variables). On top of that, Risk Simulator can handle Linear 
Optimization (i.e., when both the objective and constraints are all linear equations and 
functions) and Nonlinear Optimizations (i.e., when the objective and constraints are a mixture of 
linear and nonlinear functions and equations). 
       As far as the optimization process is concerned, Risk Simulator can be used to run a 
Discrete Optimization, that is, an optimization that is run on a discrete or static model, where no 
simulations are run. In other words, all the inputs in the model are static and unchanging. 
This optimization type is applicable when the model is assumed to be known and no 
uncertainties exist. Also, a discrete optimization can first be run to determine the optimal 
portfolio and its corresponding optimal allocation of decision variables before more advanced 
optimization procedures are applied. For instance, before running a stochastic optimization 
problem, a discrete optimization is first run to determine if solutions to the optimization 
problem exist before a more protracted analysis is performed.  
       Next, Dynamic Optimization is applied when Monte Carlo simulation is used together with 
optimization. Another name for such a procedure is Simulation-Optimization. That is, a 
simulation is first run, then the results of the simulation are applied in the Excel model, and 
then an optimization is applied to the simulated values. In other words, a simulation is run for 
N trials, and then an optimization process is run for M iterations until the optimal results are 
obtained or an infeasible set is found. Using Risk Simulator’s optimization module, you can 
choose which forecast and assumption statistics to use and replace in the model after the 
simulation is run. Then, these forecast statistics can be applied in the optimization process. 
This approach is useful when you have a large model with many interacting assumptions and 
forecasts, and when some of the forecast statistics are required in the optimization. For 
example, if the standard deviation of an assumption or forecast is required in the 
optimization model (e.g., computing the Sharpe Ratio in asset allocation and optimization 
problems where we have mean divided by standard deviation of the portfolio), then this 
approach should be used.  
       The Stochastic Optimization process, in contrast, is similar to the dynamic optimization 
procedure with the exception that the entire dynamic optimization process is repeated T 
times. That is, a simulation with N trials is run, and then an optimization is run with M 
iterations to obtain the optimal results. Then the process is replicated T times. The results will 
be a forecast chart of each decision variable with T values. In other words, a simulation is run 
and the forecast or assumption statistics are used in the optimization model to find the 
optimal allocation of decision variables. Then, another simulation is run, generating different 
forecast statistics, and these new updated values are then optimized, and so forth. Hence, the 
final decision variables will each have their own forecast chart, indicating the range of the 
optimal decision variables. For instance, instead of obtaining single-point estimates in the 
dynamic optimization procedure, you can now obtain a distribution of the decision variables 
and, hence, a range of optimal values for each decision variable, also known as a stochastic 
optimization. 
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       Finally, an Efficient Frontier optimization procedure applies the concepts of marginal increments and shadow pricing in 
optimization. That is, what would happen to the results of the optimization if one of the constraints were relaxed slightly? 
Say for instance, the budget constraint is set at $1 million. What would happen to the portfolio’s outcome and optimal 
decisions if the constraint were now $1.5 million, or $2 million, and so forth. This is the concept of the Markowitz efficient 
frontier in investment finance, where if the portfolio standard deviation is allowed to increase slightly, we want to know 
what additional returns the portfolio will generate. This process is similar to the dynamic optimization process with the 
exception that one of the constraints is allowed to change, and with each change, the simulation and optimization process is 
run. This process is best applied manually using Risk Simulator. This process can be run either manually (rerunning the 
optimization several times) or automatically (using Risk Simulator’s changing constraint and efficient frontier 
functionality). As example, the manual process is: Run a dynamic or stochastic optimization, then rerun another 
optimization with a new constraint, and repeat that procedure several times. This manual process is important, as by 
changing the constraint, the analyst can determine if the results are similar or different and, hence, whether it is worthy of 
any additional analysis, or to determine how far a marginal increase in the constraint should be to obtain a significant 
change in the objective and decision variables. This is done by comparing the forecast distribution of each decision variable 
after running a stochastic optimization. Alternatively, the automated efficient frontier approach will be shown later. 
       One item is worthy of consideration. Other software products exist that supposedly perform stochastic optimization, 
but, in fact, they do not. For instance, after a simulation is run, then one iteration of the optimization process is generated, 
and then another simulation is run, then the second optimization iteration is generated and so forth. This process is simply a 
waste of time and resources; in optimization, the model is put through a rigorous set of algorithms, where multiple 
iterations (ranging from several to thousands) are required to obtain the optimal results. Hence, generating one iteration at a 
time is a waste of time and resources. The same portfolio can be solved in under a minute using Risk Simulator as 
compared to hours using such a backward approach. Also, such an approach will typically yield bad results and is not a 
stochastic optimization approach. Be extremely careful of such methodologies when applying optimization to your models.  
       The following are example optimization problems. One uses continuous decision variables while the other uses 
discrete integer decision variables. In either model, you can apply discrete optimization, dynamic optimization, or stochastic 
optimization, or even manually generate efficient frontiers with shadow pricing. Any of these approaches can be used for 
these examples. Therefore, for simplicity, only the model setup is illustrated and it is up to the user to decide which 
optimization process to run. Also, the continuous decision variable example uses the nonlinear optimization approach 
(because the portfolio risk computed is a nonlinear function, and the objective is a nonlinear function of portfolio returns 
divided by portfolio risks) while the second example of an integer optimization is an example of a linear optimization 
model (its objective and all of its constraints are linear). Therefore, these examples encapsulate all of the procedures 
aforementioned.   
       Figure 1 illustrates the sample continuous optimization model. The example uses the 11 Continuous Optimization file 
found on Risk Simulator | Example Models. It has 10 distinct asset classes (e.g., different types of mutual funds or stocks) 
where the idea is to most efficiently and effectively allocate the portfolio holdings, that is, to generate the best portfolio 
returns possible given the risks inherent in each asset class (best bang for the buck). To truly understand the concept of 
optimization, we must delve more deeply into this sample model to see how the optimization process can best be applied. 
       The model shows the 10 asset classes and each asset class has its own set of annualized returns and annualized 
volatilities. These return and risk measures are annualized values such that they can be consistently compared across 
different asset classes. Returns are computed using the geometric average of the relative returns while the risks are 
computed using the logarithmic relative stock returns approach. 
       The Allocation Weights in column E hold the decision variables, which are the variables that need to be tweaked and 
tested such that the total weight is constrained at 100% (cell E17). Typically, to start the optimization, we will set these cells 
to a uniform value, where in this case, cells E6 to E15 are set at 10% each. In addition, each decision variable may have 
specific restrictions in its allowed range. In this example, the lower and upper allocations allowed are 5% and 35%, as seen 
in columns F and G. This means that each asset class may have its own allocation boundaries. Next, column H shows the 
return to risk ratio, which is simply the return percentage divided by the risk percentage, where the higher this value, the 
bigger the bang for the buck. The remaining model shows the individual asset class rankings by returns, risk, return to risk 
ratio, and allocation. In other words, these rankings show at a glance which asset class has the lowest risk, or the highest 
return, and so forth. 
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Figure 1. Continuous Optimization Model 
 

       The portfolio’s total returns in cell C17 is SUMPRODUCT(C6:C15, E6:E15), that is, the sum of the allocation weights 
multiplied by the annualized returns for each asset class. In other words, we haveError! Objects cannot be created 
from editing field codes., where RP is the return on the portfolio, RA,B,C,D are the individual returns on the projects, and 

A,B,C,D are the respective weights or capital allocation across each project.  
In addition, the portfolio’s diversified risk in cell D17 is computed by taking  
 
       Error! Objects cannot be created from editing field codes. 
 

Here, i,j are the respective cross-correlations between the asset classes. Hence, if the cross-correlations are negative, there 
are risk diversification effects, and the portfolio risk decreases. However, to simplify the computations here, we assume 
zero correlations among the asset classes through this portfolio risk computation, but assume the correlations when 
applying simulation on the returns as will be seen later. Therefore, instead of applying static correlations among these 
different asset returns, we apply the correlations in the simulation assumptions themselves, creating a more dynamic 
relationship among the simulated return values.  
       Finally, the return to risk ratio or Sharpe Ratio is computed for the portfolio. This value is seen in cell C18 and 
represents the objective to be maximized in this optimization exercise. To summarize, we have the following specifications 
in this example model: 
 

Objective:    Maximize Return to Risk Ratio (C18)   
Decision Variables:   Allocation Weights (E6:E15)   
Restrictions on Decision Variables: Minimum and Maximum Required (F6:G15)   
Constraints:    Total Allocation Weights Sum to 100% (E17) 
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Procedure 

 Open the example file (Continuous Optimization) and start a new profile by clicking on Risk Simulator | New Profile and 
provide it a name. 

 The first step in optimization is to set the decision variables. Select cell E6 and set the first decision variable (Risk 
Simulator | Optimization | Set Decision) and click on the link icon to select the name cell (B6), as well as the lower bound 
and upper bound values at cells F6 and G6. Then, using Risk Simulator copy, copy this cell E6 decision variable and 
paste the decision variable to the remaining cells in E7 to E15.  

 The second step in optimization is to set the constraint. There is only one constraint here, that is, the total allocation in 
the portfolio must sum to 100%. So, click on Risk Simulator | Optimization | Constraints… and select ADD to add a new 
constraint. Then, select the cell E17 and make it equal (=) to 100%. Click OK when done.  

 The final step in optimization is to set the objective function and start the optimization by selecting the objective cell 
C18 and Risk Simulator | Optimization | Set Objective and then run the optimization by selecting Risk Simulator | 
Optimization | Run Optimization and selecting the optimization of choice (Static Optimization, Dynamic Optimization, 
or Stochastic Optimization). To get started, select Static Optimization. Check to make sure the objective cell is set for 
C18 and select Maximize. You can now review the decision variables and constraints if required, or click OK to run the 
static optimization.  

 Once the optimization is complete, you may select Revert to revert back to the original values of the decision variables 
as well as the objective, or select Replace to apply the optimized decision variables. Typically, Replace is chosen after the 
optimization is done.  

 
       Figure 2 shows the screen shots of the preceding procedural steps. You can add simulation assumptions on the 
model’s returns and risk (columns C and D) and apply the dynamic optimization and stochastic optimization for additional 
practice. 
 

 

 
 

                                                                
Figure 2. Running Continuous Optimization in Risk Simulator (continues) 
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Figure 2. Running Continuous Optimization in Risk Simulator (continued) 

 

Results Interpretation 

The optimization’s final results are shown in Figure 3, where the optimal allocation of assets for the portfolio is seen in 
cells E6:E15. Given the restrictions of each asset fluctuating between 5% and 35%, and where the sum of the allocation 
must equal 100%, the allocation that maximizes the return to risk ratio is seen in Figure 3.  

 

 
Figure 3. Continuous Optimization Results 
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       A few important things must be noted when reviewing the results and optimization procedures performed thus far: 
 

 The correct way to run the optimization is to maximize the bang for the buck or returns to risk Sharpe Ratio as we have 
done.  

 If instead we maximized the total portfolio returns, the optimal allocation result is trivial and does not require 
optimization to obtain. That is, simply allocate 5% (the minimum allowed) to the lowest 8 assets, 35% (the maximum 
allowed) to the highest returning asset, and the remaining (25%) to the second-best returns asset. Optimization is not 
required. However, when allocating the portfolio this way, the risk is a lot higher as compared to when maximizing the 
returns to risk ratio, although the portfolio returns by themselves are higher.  

 In contrast, one can minimize the total portfolio risk, but the returns will now be less.  
 
       Table 1 illustrates the results from the three different objectives being optimized. 
 

Table 1. Optimization Results 

Objective: 

   
Portfolio 
Returns 

Portfolio 
Risk 

Portfolio 
Returns 
to Risk 
Ratio 

Maximize Returns to Risk Ratio 12.69% 4.52% 2.8091 
Maximize Returns    13.97% 6.77% 2.0636 
Minimize Risk   12.38% 4.46% 2.7754 

 
 

From the table, it can be seen that the best approach is to maximize the returns to risk ratio; that is, for the same amount 
of risk, this allocation provides the highest amount of return. Conversely, for the same amount of return, this allocation 
provides the lowest amount of risk possible. This approach of bang for the buck or returns to risk ratio is the cornerstone of 
the Markowitz efficient frontier in modern portfolio theory. That is, if we constrained the total portfolio risk level and 
successively increased it, over time we would obtain several efficient portfolio allocations for different risk characteristics. 
Thus, different efficient portfolio allocations can be obtained for different individuals with different risk preferences.  
 

 

 


