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Many algorithms exist to run optimization and many different procedures exist when 
optimization is coupled with Monte Carlo simulation. In Risk Simulator, there are three 
distinct optimization procedures and optimization types as well as different decision variable 
types. For instance, Risk Simulator can handle Continuous Decision Variables (1.2535, 0.2215, 
and so forth), Integer Decision Variables (e.g., 1, 2, 3, 4 or 1.5, 2.5, 3.5, and so forth), Binary 
Decision Variables (1 and 0 for go and no-go decisions), and Mixed Decision Variables (both 
integers and continuous variables). On top of that, Risk Simulator can handle Linear 
Optimization (i.e., when both the objective and constraints are all linear equations and 
functions) and Nonlinear Optimizations (i.e., when the objective and constraints are a mixture of 
linear and nonlinear functions and equations).  
       As far as the optimization process is concerned, Risk Simulator can be used to run a 
Discrete Optimization, that is, an optimization that is run on a discrete or static model, where no 
simulations are run. In other words, all the inputs in the model are static and unchanging. 
This optimization type is applicable when the model is assumed to be known and no 
uncertainties exist. Also, a discrete optimization can first be run to determine the optimal 
portfolio and its corresponding optimal allocation of decision variables before more advanced 
optimization procedures are applied. For instance, before running a stochastic optimization 
problem, a discrete optimization is first run to determine if solutions to the optimization 
problem exist before a more protracted analysis is performed.  
       Next, Dynamic Optimization is applied when Monte Carlo simulation is used together with 
optimization. Another name for such a procedure is Simulation-Optimization. That is, a 
simulation is first run, then the results of the simulation are applied in the Excel model, and 
then an optimization is applied to the simulated values. In other words, a simulation is run for 
N trials, and then an optimization process is run for M iterations until the optimal results are 
obtained or an infeasible set is found. Using Risk Simulator’s optimization module, you can 
choose which forecast and assumption statistics to use and replace in the model after the 
simulation is run. Then, these forecast statistics can be applied in the optimization process. 
This approach is useful when you have a large model with many interacting assumptions and 
forecasts, and when some of the forecast statistics are required in the optimization. For 
example, if the standard deviation of an assumption or forecast is required in the 
optimization model (e.g., computing the Sharpe Ratio in asset allocation and optimization 
problems where we have mean divided by standard deviation of the portfolio), then this 
approach should be used. 
       The Stochastic Optimization process, in contrast, is similar to the dynamic optimization 
procedure except that the entire dynamic optimization process is repeated T times. That is, a 
simulation with N trials is run, and then an optimization is run with M iterations to obtain the 
optimal results. Then the process is replicated T times. The results will be a forecast chart of 
each decision variable with T values. In other words, a simulation is run and the forecast or 
assumption statistics are used in the optimization model to find the optimal allocation of 
decision variables. Then, another simulation is run, generating different forecast statistics, and 
these new updated values are then optimized, and so forth. Hence, the final decision variables 
will each have their own forecast chart, indicating the range of the optimal decision variables. 
For instance, instead of obtaining single-point estimates in the dynamic optimization 
procedure, you can now obtain a distribution of the decision variables and, hence, a range of 
optimal values for each decision variable, also known as a stochastic optimization.       
       Finally, an Efficient Frontier optimization procedure applies the concepts of marginal 
increments and shadow pricing in optimization. That is, what would happen to the results of 
the optimization if one of the constraints were relaxed slightly? Say, for instance, that the 
budget constraint is set at $1 million. What would happen to the portfolio’s outcome and 
optimal decisions if the constraint were now $1.5 million, or $2 million, and so forth. This is 
the concept of the Markowitz efficient frontier in investment finance, where if the standard  
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deviation of the portfolio is allowed to increase slightly, we want to know what additional returns the portfolio will 
generate. This process is similar to the dynamic optimization process with the exception that one of the constraints is 
allowed to change, and with each change, the simulation and optimization process is run. This process is best applied 
manually using Risk Simulator. This process can be run either manually (re-running the optimization several times) or 
automatically (using Risk Simulator’s changing constraint and efficient frontier functionality). As example, the manual 
process is: Run a dynamic or stochastic optimization, then rerun another optimization with a new constraint, and repeat 
that procedure several times. This manual process is important, as by changing the constraint, the analyst can determine if 
the results are similar or different, and hence, whether it is worthy of any additional analysis, or to determine how far a 
marginal increase in the constraint should be to obtain a significant change in the objective and decision variables. This is 
done by comparing the forecast distribution of each decision variable after running a stochastic optimization. Alternatively, 
the automated efficient frontier approach will be shown later. 
       One item is worthy of consideration. Other software products exist that supposedly perform stochastic optimization, 
but, in fact, they do not. For instance, after a simulation is run, then one iteration of the optimization process is generated, 
and then another simulation is run, then the second optimization iteration is generated and so forth. This process is simply a 
waste of time and resources; that is, in optimization, the model is put through a rigorous set of algorithms, where multiple 
iterations (ranging from several to thousands of iterations) are required to obtain the optimal results. Hence, generating one 
iteration at a time is a waste of time and resources. The same portfolio can be solved in under a minute using Risk 
Simulator as compared to multiple hours using such a backward approach. Also, such a simulation-optimization approach 
will typically yield bad results and is not a stochastic optimization approach. Be extremely careful of such methodologies 
when applying optimization to your models.  
       The following are example optimization problems. One uses continuous decision variables while the other uses 
discrete integer decision variables. In either model, you can apply discrete optimization, dynamic optimization, or stochastic 
optimization, or even manually generate efficient frontiers with shadow pricing. Any of these approaches can be used for 
these examples. Therefore, for simplicity, only the model setup is illustrated and it is up to the user to decide which 
optimization process to run. Also, the continuous decision variable example uses the nonlinear optimization approach 
(because the portfolio risk computed is a nonlinear function, and the objective is a nonlinear function of portfolio returns 
divided by portfolio risks) while the second example of an integer optimization is an example of a linear optimization 
model (its objective and all of its constraints are linear). Therefore, these examples encapsulate all of the procedures 
aforementioned.   
       Sometimes, the decision variables are not continuous but discrete integers (e.g., 1, 2, 3) or binary (e.g., 0 and 1). We can 
use such binary decision variables as on-off switches or go/no-go decisions. Figure 1 illustrates a project selection model 
where there are 12 projects listed. The example here uses the Optimization Discrete file found on Risk Simulator | Example 
Models. Each project has its own returns (ENPV and NPV for expanded net present value and net present value––the 
ENPV is simply the NPV plus any strategic real options values), costs of implementation, risks, and so forth. If required, 
this model can be modified to include required full-time equivalences (FTE) and other resources of various functions, and 
additional constraints can be set on these additional resources. The inputs into this model are typically linked from other 
spreadsheet models. For instance, each project will have its own discounted cash flow or returns on investment model. The 
application here is to maximize the portfolio’s Sharpe Ratio subject to some budget allocation. Many other versions of this 
model can be created, for instance, maximizing the portfolio returns, or minimizing the risks, or adding more constraints 
where the total number of projects chosen cannot exceed 6, and so forth and so on. All of these items can be run using this 
existing model. 
 
 

Procedure 

 Open the example file (Discrete Optimization) and start a new profile by clicking on Risk Simulator | New Profile and 
provide it a name. 

 The first step in optimization is to set up the decision variables. Set the first decision variable by selecting cell J4, and 
select Risk Simulator | Optimization | Set Decision, click on the link icon to select the name cell (B4), and select the Binary 
variable. Then, using Risk Simulator copy, copy this J4 decision variable cell and paste the decision variable to the 
remaining cells in J5 to J15.  
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Figure 1. Discrete Integer Optimization Model 
 
 
 

 

Figure 2. Running Discrete Integer Optimization in Risk Simulator 
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 The second step in optimization is to set the constraint. There are two constraints here, that is, the total budget 
allocation in the portfolio must be less than $5,000 and the total number of projects must not exceed 6. So, click on 
Risk Simulator | Optimization | Constraints… and select ADD to add a new constraint. Then, select the cell D17 and 
make it less than or equal (<=) to 5000. Repeat by setting cell J17 <= 6.  

 The final step in optimization is to set the objective function and start the optimization by selecting cell C19 and 
selecting Risk Simulator | Optimization | Set Objective and then run the optimization (Risk Simulator | Optimization | Run 
Optimization) and choosing the optimization of choice (Static Optimization, Dynamic Optimization, or Stochastic 
Optimization). To get started, select Static Optimization. Check to make sure that the objective cell is C19 and select 
Maximize. You can now review the decision variables and constraints if required, or click OK to run the static 
optimization.  

 
Figure 2 shows the screen shots of the foregoing procedural steps. You can add simulation assumptions on the model’s 
ENPV and Risk (columns C and F) and apply the dynamic optimization and stochastic optimization for additional practice. 
 
 
Results Interpretation 

Figure 3 shows a sample optimal selection of projects that maximizes the Sharpe Ratio. In contrast, one can always 
maximize total revenues, but this process is trivial and simply involves choosing the highest returning project and going 
down the list until you run out of money or exceed the budget constraint. Doing so will yield theoretically undesirable 
projects as the highest yielding projects typically hold higher risks. Now, if desired, you can replicate the optimization using 
a stochastic or dynamic optimization by adding assumptions in the ENPV and Risk values.  

 

 
Figure 3. Optimal Selection of Projects That Maximizes the Sharpe Ratio 

 
 
 
 
 
 

 


