	DETAILED COMPETITIVE COMPARISONS	Real Options Valuation, Inc.	Oracle, Inc. / Crystal Ball	Palisades, Inc.
New Software	ROV Risk Simulator	\star	夫	\star
	ROV BizStats	*	None	*
	ROV Modeling Toolkit	*	None	None
	ROV Quantitative Data Miner	\star	None	None
	ROV Real Options SLS	\star	None	None
	ROV Modeler, ROV Optimizer, ROV Valuator	\star	None	None
	ROV Employee Stock Options Toolkit	\star	None	None
	ROV Extractor and Evaluator	\star	None	None
	ROV Web Models	*	None	None
	ROV Compiler	*	None	None
	ROV Visual Modeler	*	None	None
	ROV Dashboard	*	None	None

SIM ULATION			
FUNCTIONALITY	RISK SIMULATOR $2011 ®$	DECISION TOOLS Industrial 5.7	CRYSTAL BALL BA.1.2.1.000
64-Bit and 32-Bit Compatible	YES	YES	YES
Compatible with Excel VBA	YES	YES	NO
Comprehensive Simulation Reports, Statistcal Result, and Data Extraction	YES	YES	YES
Correlated Simulation and Distributional Truncation	YES	YES	YES
Correlation Copulas	YES	NO	NO
Creating Multiple Profiles on Simulation for Scenario Analysis on Simulation	YES	NO	NO
Decision Trees	Visual Modeler	YES	NO
Excel 2010, 2007, and 2003 Compatible	YES	YES	YES
Excel-based Functions	YES	YES	NO
Foreign Languages	10	7	3
Latin Hypercube	YES	YES	YES
Latin Hypercube Simulation	YES	YES	YES
M odel Check and Verification	YES	YES	NO
M onte Carlo Simulation	YES	YES	YES
Multidimensional Simulation	YES	YES	YES
Normal, T, Quasi-Normal Copula	YES	NO	NO
Probability Distributions	45	40	26
Random Number Generators	6	8	1
RUNTIME Version	YES	NO	NO
Windows 7, VISTA, and Windows XP Compatible	YES	YES	YES

ANALYTICS			
FUNCTIONALITY	$\begin{gathered} \text { RISK } \\ \text { SIMULATOR } \\ \text { 2011® } \end{gathered}$	$\begin{gathered} \text { DECISION } \\ \text { TOOLS } \\ \text { Industrial } 5.7 \end{gathered}$	$\begin{gathered} \text { CRYSTAL } \\ \text { BALL } \\ \text { 11.1.2.1.000 } \end{gathered}$
ANOVA Tables	YES	YES	NO
Chi-Square Tests of Independence	YES	YES	NO
Confidence Interval Analysis	YES	YES	NO
Data Diagnostics Tool (Autocorrelation, Distributive Lags, Correlation, Micronumerosity, Heteroskedasticity, M ulticollinearity, Nonlinearity, Normality of Errors, Nonstationarity, Outliers, Stochastic Parameter Estimation, Distributional Fitting)	YES	NO	NO
Data Extraction of Simulation Forecasts	YES	YES	YES
Deseasonalization and Detrending	YES	NO	NO
Distributional Analysis (PDF, CDF, ICDF of Probability Distributions)	YES	YES	NO
Distributional Charts and Tables (Comparing M ultiple Distributions and Their Moments)	YES	YES	YES
Distributional Designer (Custom Distributions)	YES	NO	NO
Distributional Fitting of Existing Data (Single and M ultiple Variables with Correlations)	YES	YES	YES
Distributional Fitting Using Percentiles	YES	NO	NO
Distributional Hypothesis Tests	YES	YES	NO
Forecast charts with histogram, cumulative distribution, distributional fitting, and statistical analysis results	YES	YES	YES
Nonparametric Bootstrap Simulation	YES	YES	NO
Nonparametric Hypothesis Tests	YES	YES	NO
Normality Test	YES	YES	NO
Overlay Charts (Comparing M ultiple Forecast Charts)	YES	YES	YES
Percentile Data Fitting	YES	NO	NO
Precision Control for Simulation Trials	YES	YES	YES
Principal Component Analysis or Discriminant Analysis	YES	YES	NO
Scenario Analysis	YES	YES	YES
Segmentation Clustering	YES	NO	NO
Sensitivity Analysis	YES	YES	YES
Six Sigma Analysis	Modeling Toolkit	YES	NO
Statistical Analysis	YES	NO	NO
Statistical Analysis of Data (Descriptive Statistics, Distributional Fitting, Histogram and Charts, Hypothesis Testing, Nonlinear Extrapolation, Normality Test, Stochastic Process Parameter Estimation, Time-Series Autocorrelation, Time-Series Forecasting, Trend Line Projection, and General Trend Lines)	YES	NO	NO
Structural Break Analysis	YES	NO	NO
Tornado and Spider Charts for Static Sensitivity Analysis	YES	YES	YES

FORECASTING			
FUNCTIONALITY	RISK SIMULATOR 2011®	$\begin{gathered} \text { DECISION } \\ \text { TOOLS } \\ \text { Industrial } 5.7 \\ \hline \end{gathered}$	$\begin{aligned} & \text { CRYSTAL } \\ & \text { BALL } \\ & \text { 11.1.2.1.000 } \end{aligned}$
ARIM A P, D, Q (Autoregressive Integrated M oving Average Forecasting M odels)	YES	NO	NO
Auto ARIM A M odels	YES	NO	YES
Auto Econometric M odeling	YES	NO	NO
Basic Econometric M odeling	YES	NO	NO
Combinorial Fuzzy Logic	YES	NO	NO
Cubic Spline M odels	YES	NO	NO
Exponential J and Logistic S Curves	YES	NO	NO
GARCH Volatility Forecasts (GARCH, GARCH-M, TGARCH, TGARCH-M, EGARCH, EGARCH-T, GJR GARCH, GJR TGARCH)	YES	NO	NO
LOGIT, PROBIT, and TOBIT M odels for Limited Dependent Variables	YES	$\begin{aligned} & \hline \text { NO (Logit } \\ & \text { Only) } \end{aligned}$	NO
M arkov Chains	YES	NO	NO
Multiple Regression Analysis	YES	YES	YES
Neural Network Forecasts	YES	NO	NO
Nonlinear Extrapolation	YES	NO	NO
Programmable (XML) Forecasts	YES	NO	NO
Stepwise Regression (Forward, Backward, Combination, Correlation)	YES	YES	NO
Stochastic Processes (Random Walk, Brownian M otion, Mean-Reversion, Jump-Diffusion)	YES	NO	NO
Time Series Forecasting	YES	YES	YES
Trendlines Forecasting	YES	NO	NO

OPTIMIZATION			RISK SIM ULATOR $\mathbf{2 0 1 1 ®}$
FUNCTIONALITY	DECISION TOOLS Industrial 5.7	CRYSTAL BALL $\mathbf{1 1 . 1 . 2 . 1 . 0 0 0 ~}$	
Dynamic Optimization	YES	YES	YES
Efficient Frontier Analysis	YES	YES	YES
Genetic Algorithm Optimization	YES	NO	NO
Goal Seek (Fast Search)	YES	YES	YO
Linear Optimization	YES	NO	NO
Multiphasic Optimization for Global Optimum Search	YES	YES	YES
Nonlinear Optimization	YES	YES	YES
Optimization for Binary Variables	YES	YES	YES
Optimization for Continuous Variables	YES	YES	YES
Optimization for Discrete Variables	YES	YES	YES
Precision, Tolerance, and Convergence Control	YES	NO	NO
Single Variable Optimization	YES	YES	YES
Static Optimization	YES	NO	NO
Stochastic Optimization	YES	NO	NO
Super Speed Simulation with Optimization			

STATISTICS			
FUNCTIONALITY	RISK SIMULATOR 2011®	$\begin{gathered} \hline \text { DECISION } \\ \text { TOOLS } \\ \text { Industrial } 5.7 \end{gathered}$	$\begin{gathered} \text { CRYSTAL } \\ \text { BALL } \\ \text { 11.1.2.1.000 } \end{gathered}$
Foreign Languages	10	0	0
M ultiple M odels in One Profile	YES	NO	NO
Results Charts and Statistics	YES	NO	NO
Savable Profiles of M odels	YES	NO	NO
Super Speed Computation	YES	NO	NO
Visualization Tool	YES	NO	NO
XML Editable and Programmable Profiles	YES	NO	NO
Detailed List of Supported Statistical M ethods			
ANOVA: Randomized Blocks M ultiple Treatments	YES	NO	NO
ANOVA: Single Factor M ultiple Treatments	YES	NO	NO
ANOVA: Two Way Analysis	YES	NO	NO
ARIM A	YES	NO	NO
Auto ARIM A	YES	NO	NO
Autocorrelation and Partial Autocorrelation	YES	NO	NO
Autoeconometrics (Detailed)	YES	NO	NO
Autoeconometrics (Quick)	YES	NO	NO
Average	YES	NO	NO
Combinatorial Fuzzy Logic Forecasting	YES	NO	NO
Control Chart: C	YES	NO	NO
Control Chart: NP	YES	NO	NO
Control Chart: P	YES	NO	NO
Control Chart: R	YES	NO	NO
Control Chart: U	YES	NO	NO
Control Chart: X	YES	NO	NO
Control Chart: XMR	YES	NO	NO
Correlation	YES	NO	NO
Correlation (Linear)	YES	NO	NO
Count	YES	NO	NO
Covariance	YES	NO	NO
Cubic Spline	YES	NO	NO
Custom Econometric M odel	YES	NO	NO
Data Descriptive Statistics	YES	NO	NO
Deseasonalize	YES	NO	NO
Difference	YES	NO	NO
Distributional Fitting	YES	NO	NO
Exponential J Curve	YES	NO	NO
GARCH	YES	NO	NO
Heteroskedasticity	YES	NO	NO
Lag	YES	NO	NO
Lead	YES	NO	NO

Limited Dependent Variables (Logit)	YES	NO	NO
Limited Dependent Variables (Probit)	YES	NO	NO
Limited Dependent Variables (Tobit)	YES	NO	NO
Linear Interpolation	YES	NO	NO
Linear Regression	YES	NO	NO
LN	YES	NO	NO
Log	YES	NO	NO
Logistic S Curve	YES	NO	NO
M arkov Chain	YES	NO	NO
Max	YES	NO	NO
Median	YES	NO	NO
M in	YES	NO	NO
Mode	YES	NO	NO
Neural Network	YES	NO	NO
Nonlinear Regression	YES	NO	NO
Nonlinear M odels	YES	NO	NO
Nonparametric: Chi-Square Goodness of Fit	YES	NO	NO
Nonparametric: Chi-Square Independence	YES	NO	NO
Nonparametric: Chi-Square Population Variance	YES	NO	NO
Nonparametric: Friedman Test	YES	NO	NO
Nonparametric: Kruskal-Wallis Test	YES	NO	NO
Nonparametric: Lilliefors Test	YES	NO	NO
Nonparametric: Runs Test	YES	NO	NO
Nonparametric: Wilcoxon Signed-Rank (One Var)	YES	NO	NO
Nonparametric: Wilcoxon Signed-Rank (Two Var)	YES	NO	NO
Parametric: One Variable (T) M ean	YES	NO	NO
Parametric: One Variable (Z) M ean	YES	NO	NO
Parametric: One Variable (Z) Proportion	YES	NO	NO
Parametric: Two Variable (F) Variances	YES	NO	NO
Parametric: Two Variable (T) Dependent M eans	YES	NO	NO
Parametric: Two Variable (T) Independent Equal Variance	YES	NO	NO
Parametric: Two Variable (T) Independent Unequal Variance	YES	NO	NO
Parametric: Two Variable (Z) Independent M eans	YES	NO	NO
Parametric: Two Variable (Z) Independent Proportions	YES	NO	NO
Power	YES	NO	NO
Principal Component Analysis	YES	NO	NO
Rank Ascending	YES	NO	NO
Rank Descending	YES	NO	NO
Relative LN Returns	YES	NO	NO
Relative Returns	YES	NO	NO
Seasonality	YES	NO	NO
Segmentation Clustering	YES	NO	NO
Semi-Standard Deviation (Lower)	YES	NO	NO
Semi-Standard Deviation (Upper)	YES	NO	NO

Standard 2D Area	YES	NO	NO
Standard 2D Bar	YES	NO	NO
Standard 2D Line	YES	NO	NO
Standard 2D Point	YES	NO	NO
Standard 2D Scatter	YES	NO	NO
Standard 3D Area	YES	NO	NO
Standard 3D Bar	YES	NO	NO
Standard 3D Line	YES	NO	NO
Standard 3D Point	YES	NO	NO
Standard 3D Scatter	YES	NO	NO
Standard Deviation (Population)	YES	NO	NO
Standard Deviation (Sample)	YES	NO	NO
Stepwise Regression (Backward)	YES	NO	NO
Stepwise Regression (Correlation)	YES	NO	NO
Stepwise Regression (Forward)	YES	NO	NO
Stepwise Regression (Forward-Backward)	YES	NO	NO
Stochastic Processes (Exponential Brownian M otion)	YES	NO	NO
Stochastic Processes (Geometric Brownian M otion)	YES	NO	NO
Stochastic Processes (Jump Diffusion)	YES	NO	NO
Stochastic Processes (M ean Reversion with Jump Diffusion)	YES	NO	NO
Stochastic Processes (M ean Reversion)	YES	NO	NO
Structural Break	YES	NO	NO
Sum	YES	NO	NO
Time-Series Analysis (Auto)	YES	NO	NO
Time-Series Analysis (Double Exponential Smoothing)	YES	NO	NO
Time-Series Analysis (Double M oving Average)	YES	NO	NO
Time-Series Analysis (Holt-Winter's Additive)	YES	NO	NO
Time-Series Analysis (Holt-Winter's M ultiplicative)	YES	NO	NO
Time-Series Analysis (Seasonal Additive)	YES	NO	NO
Time-Series Analysis (Seasonal M ultiplicative)	YES	NO	NO
Time-Series Analysis (Single Exponential Smoothing)	YES	NO	NO
Time-Series Analysis (Single M oving Average)	YES	NO	NO
Trend Line (Difference Detrended)	YES	NO	NO
Trend Line (Exponential Detrended)	YES	NO	NO
Trend Line (Exponential)	YES	NO	NO
Trend Line (Linear Detrended)	YES	NO	NO
Trend Line (Linear)	YES	NO	NO
Trend Line (Logarithmic Detrended)	YES	NO	NO
Trend Line (Logarithmic)	YES	NO	NO
Trend Line (M oving Average Detrended)	YES	NO	NO
Trend Line (M oving Average)	YES	NO	NO
Trend Line (Polynomial Detrended)	YES	NO	NO
Trend Line (Polynomial)	YES	NO	NO
Trend Line (Power Detrended)	YES	NO	NO

Trend Line (Power)	YES	NO	NO
Trend Line (Rate Detrended)	YES	NO	NO
Trend Line (Static Mean Detrended)	YES	NO	NO
Trend Line (Static Median Detrended)	YES	NO	NO
Variance (Population)	YES	NO	NO
Variance (Sample)	YES	NO	NO
Volatility: EGARCH	YES	NO	NO
Volatility: EGARCH-T	YES	NO	NO
Volatility: GARCH	YES	NO	NO
Volatility: GARCH-M	YES	NO	NO
Volatility: GJR GARCH	YES	NO	NO
Volatility: GJR TGARCH	YES	NO	NO
Volatility: Log Returns Approach	YES	NO	NO
Volatility: TGARCH	YES	NO	NO
Volatility: TGARCH-M	YES	NO	NO
Yield Curve (Bliss)	YES	NO	NO
Yield Curve (Nelson-Siegel)	YES	NO	NO

	This modeling toolkit comprises over 800 functions, models and tools as well as over 300 Excel and SLS-based model templates using Risk Simulator, Real Options SLS, Excel, as well as advanced analytical functions in the Modeling Toolkit: - Credit Analysis - Debt Analysis - Decision Analysis - Forecasting - Industry Applications - Option Analysis - Probability of Default - Project Management - Risk Hedge - Six Sigma and Quality Analysis Tools - Statistics Tools - Valuation Model - Yield Curve	\star	None	None

	Abandonment, Contraction, Expansion, and Chooser Options	\star	None	None
	American, Bermudan, Customized, and European Options	\star	None	None
	Changing Volatility Options	\star	None	None
	Example Advanced SLS models	*	None	None
	Exotic Single and Double Barrier Options	\star	None	None
	Exotic Options Calculator with over 300+ Models	*	None	None
	Financial Options, Real Options, and Employee Stock Options	\star	None	None
	Lattice Maker (Excel add-in)	\star	None	None
	Multiple Underlying Asset and Multiple Phased Options	\star	None	None
	Simultaneous and Multiple Phased Sequential Compound Options	\star	None	None
	Specialized Options (Mean-Reversion, Jump-Diffusion, Rainbow)	\star	None	None

Standalone software with Excel add-in functionality (simulation and optimization compatible functions in Excel)	\star	None	None
Trinomial, quadranomial, pentanomial lattices for mean-reverting and jump-diffusion with dual-asset rainbow options		None	None
Visible equations and functions Volatility computation models	\star	None	None
Type of Employee Stock Options - Blackout Period - Changing Forfeiture Rates - Changing Risk-free Rates - Changing Volatilities - Forfeiture Rates (Pre- and Post-vesting) - Stock Price Barrier Requirements - Suboptimal Exercise Behavior Multiple Vesting Periods - ALL OTHER EXOTIC VARIABLES	\star	None	None

	Advanced Modeling Services	\star	None	None
	Basic Model Building Services	\star	\star	\star
	Employee Stock Options Valuation 2004 FAS 123	\star	None	None
$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Exotic Financial Instrument Valuation (Warrants, Convertibles, Swaptions, CDO, MBS, and many other customized instruments)	\star	None	None
	Insurance and Actuarial Analysis	\star	None	None
	Real Options Valuation Services	\star	None	None
	Risk Analysis and Strategy Valuation	\star	None	None
	Valuation Services	\star	None	None

	Certified in Risk Management (CRM)	\star	None	None
	Credit and Market Risk Analysis for Basel II (onsite seminars only)	\star	None	None
	Risk Analysis Courses: - Analytical Tools - Basic Real Options (SLS software) - Forecasting (Risk Simulator) - Monte Carlo Simulation (Risk Simulator) - Optimization (Risk Simulator)	\star	\star	\star
	Real Options for Analyst - Advanced real options analytics - Understanding the SLS software - Framing options	\star	None	None
	Real Options for Executives - The basics of real options - Making strategic decisions in real options - Framing strategic options - Interpreting options results	\star	None	None
	Valuing Employee Stock Options - Applying binomial lattices in the ESO Toolkit software to value employee stock options under the 2004 revised FAS 123	\star	None	None
	Customized Seminars - Courses customized to your specific needs	\star	\star	\star

MODELING TOOLKIT

Real Options Valuation, Inc. is proud to present its latest innovation, the Modeling Toolkit (Premium Edition). This toolkit comprises over 800 analytical models, functions and tools, and about 300 analytical model Excel/SLS templates and example spreadsheets covering the areas of risk analysis, simulation, forecasting, Basel II risk analysis, credit and default risk, statistical models, and much more! This toolkit is a set of mathematically sophisticated models written in C++ and linked into Excel spreadsheets. There are over 1100 models, functions, with spreadsheet and SLS templates in this toolkit and the analytical areas covered include:

Analytics

1. Central Limit Theorem
2. Central Limit Theorem (Lottery Analysis)
3. Flaw of Averages
4. M athematical Integration
5. Parametric and Nonparametric Hypothesis Tests
6. Projectile M otion
7. Regression Diagnostics
8. Ships in the Night
9. Statistical Analysis
10. Weighting of Ratios

Banking M odels
11. Audit of Construction Lending
12. Banker's Construction Budget
13. Classified Breakeven Loan
14. Classified Loan Borrowing Base
15. Classified Loan Cash Budget and Overdraft
16. Federal Reserve Camels Rating
17. Firm in Financial Distress
18. Project Finance Risk Rating
19. Queuing Models
20. Reconciling Enron's Cash Flow
21. Risk Rating M odel
22. Sample Cash Flows
23. Sensitivity Projections
24. Stochastic Loan Pricing Model
25. Valuation and Appraisal

Credit Analysis
26. Credit Default Swaps/Credit Spread Options
27. Credit Default Swaps Correlated Counterparty Defaults
28. Credit Premium
29. Credit Risk and Price Effects
30. External Debt Rating Spreads
31. Internal Credit Risk Rating
32. Profit-Cost of New Credit

Debt Analysis
33. Asset Equity Parity M odel
34. Cox M odel on Price and Yield of Risky Debt with Mean Reverting Rates
35. Debt Repayment and Amortization
36. Debt Sensitivity M odels
37. M erton Price of Risky Debt Stochastic Asset and Interest
38. Vasicek Debt Option Valuation
39. Vasicek Price/Yield Risky Debt

Decision Analysis
40. Decision Tree Basics
41. Decision Tree, EVPI, M inimax, Bayes Theorem
42. Economic Order Quantity and Inventory Reorder Point
43. Economic Order Quantity and Optimal M anufacturing
44. Expected Utility Analysis
45. Inventory Control
46. Queuing Models

Exotic Options
47. American, Bermudan and European Options
48. Asian Arithmetic
49. Asian Geometric
50. Asset or Nothing
51. Barrier Options
52. Binary Digital Options
53. Cash or Nothing
54. Commodity Options
55. Complex Chooser
56. Credit Spread Options
57. Currency Options
58. Double Barriers
59. Exchange Assets
60. Extreme Spread
61. Foreign Equity Linked Forex
62. Foreign Equity Domestic Currency
63. Foreign Equity Fixed Forex
64. Foreign Takeover Options
65. Forward Start
66. Futures and Forward Options
67. Gap Options
68. Graduated Barriers
69. Index Options
70. Inverse Gamma Out-of-the-money Options
71. Jump Diffusion
72. Leptokurtic and Skewed Options
73. Lookback Fixed Strike Partial Time
74. Lookback Fixed Strike
75. Lookback Floating Strike Partial Time
76. Lookback Floating Strike
77. Min and Max of Two Assets
78. Option Collar
79. Options on Options
80. Perpetual Options
81. Simple Chooser
82. Spread on Futures
83. Supershares
84. Time Switch
85. Trading Day Corrections
86. Two Assets Barrier
87. Two Assets Cash
88. Two Assets Correlated
89. Uneven Dividends
90. Writer Extendible

Forecasting
91. Brownian Motion Stochastic Process
92. Data Diagnostics
93. Econometric, Correlations and Multiple Regression
94. Exponential J-Growth Curves
95. Forecasting M anual Computations
96. Jump-Diffusion Stochastic Process
97. Linear Interpolation
98. Logistic S-Growth Curves
99. Markov Chains and Market Share
100. Mean-Reverting Stochastic Process
101. Multiple Regression
102. Nonlinear Extrapolation
103. Stochastic Processes and Yield Curves
104. Stock Distribution at Horizon
105. Time-Series Analysis
106. Time-Series ARIM A

Industry Applications
107. Asset Liability M anagement ALM
108. Biotech - M anufacturing Strategy
109. Biotech - In-licensing and Deal Structuring
110. Biotech - Investment Valuation
111. Electric Utility - Efficient Frontier Generation
112. Electric Utility - Electricity Contract Risk
113. Information Technology Forecasting Use
114. Information Technology Decision Analysis
115. Pensions - Closed Group Portfolio Matching
116. Pensions - Accounting M odeling and Optimization
117. Real Estate - Commercial ROI

Optimization

118. Capital Investments (Part A)
119. Capital Investments (Part B)
120. Continuous Portfolio Allocation
121. Discrete Project Selection
122. Inventory Optimization
123. Investment Portfolio Allocation
124. Military Portfolio and Efficient Frontier
125. Optimal Pricing with Elasticity
126. Optimization of a Harvest Model
127. Optimizing Ordinary Least Squares
128. Stochastic Portfolio Allocation

Options Analysis
129. Binary Digital Instruments
130. Inverse Floater Bond Lattice M aker
131. Options Adjusted Spreads
on Debt
132. Options on Debt
133. Options Trading Strategies

Probability of Default
134. Empirical (Individuals)
135. External Options M odel (Public Company)
136. M erton Internal M odel (Private Company)
137. M erton M arket Options M odel (Industry Comparable)
138. Yields and Spreads (M arket Comparable)

Project Management
139. Cost Estimation M odel
140. Critical Path Analysis (CPM PERT GANTT)
141. Project Timing

Real Options SLS
142. Employee Stock Options - Simple American Call
143. Employee Stock Options - Simple Bermudan Call with Vesting
144. Employee Stock Options - Simple European Call
145. Employee Stock Options Suboptimal Exercise
146. Employee Stock Options - Vesting and Suboptimal Exercise
147. Employee Stock Options - Vesting, Blackout, Suboptimal, Forfeiture
148. Exotic Options - American Call Option with Dividends
149. Exotic Options - Accruals on Basket of Assets
150. Exotic Options - American Call Option on Foreign Exchange
151. Exotic Options - American Call Option on Index Futures
152. Exotic Options - Barrier Option Down and In Lower Barrier
153. Exotic Options - Barrier Option Down and Out Lower Barrier
154. Exotic Options - Barrier Option Up and In Upper Barrier Call
155. Exotic Options - Barrier Option Up and In, Down and In Double Barrier Call
156. Exotic Options - Barrier Option Up and Out Upper Barrier
157. Exotic Options - Barrier Option Up and Out, Down and Out Double Barrier
158. Exotic Options - Basic American, European, versus Bermudan Call Options
159. Exotic Options - Chooser Option
160. Exotic Options - Equity Linked Notes
161. Exotic Options - European Call Option with Dividends
162. Exotic Options - Range Accruals
163. Options Analysis - Plain Vanilla Call I
164. Options Analysis - Plain Vanilla Call II
165. Options Analysis - Plain Vanilla Call III
166. Options Analysis - Plain Vanilla Call IV
167. Options Analysis - Plain Vanilla Put
168. Real Options - Abandonment American Option
169. Real Options - Abandonment Bermudan Option
170. Real Options - Abandonment Customized Option
171. Real Options - Abandonment European Option
172. Real Options - Contraction American and European Option
173. Real Options - Contraction Bermudan Option
174. Real Options - Contraction Customized Option
175. Real Options - Dual-Asset Rainbow Pentanomial Lattice
176. Real Options - Excel-based Options Models
177. Real Options - Exotic Complex Floating American Chooser
178. Real Options - Exotic Complex Floating European Chooser
179. Real Options - Expand Contract Abandon American and European Option
180. Real Options - Expand Contract Abandon Bermudan Option
181. Real Options - Expand Contract Abandon Customized I
182. Real Options - Expand Contract Abandon Customized II
183. Real Options - Expansion American and European Option
184. Real Options - Expansion Bermudan Option
185. Real Options - Expansion Customized Option
186. Real Options - Jump Diffusion Calls and Puts using Quadranomial Lattices
187. Real Options - Mean Reverting Calls and Puts using Trinomial Lattices
188. Real Options - Multiple Asset Competing Options (3D Binomial)
189. Real Options - Multiple Phased Complex Sequential Compound Option
190. Real Options - Multiple Phased Sequential Compound
191. Real Options - Multiple Phased Simultaneous Compound
192. Real Options - Simple Calls and Puts (Trinomial Lattices)
193. Real Options - Simple Two Phased Sequential Compound
194. Real Options - Simple Two Phased Simultaneous Compound
195. Real Options - Strategic Cases - HighTech M anufacturing Strategy A
196. Real Options - Strategic Cases - HighTech M anufacturing Strategy B
197. Real Options - Strategic Cases - HighTech M anufacturing Strategy C
198. Real Options - Strategic Cases Oil and Gas - Strategy A
199. Real Options - Strategic Cases Oil and Gas - Strategy B
200. Real Options - Strategic Cases R\&D Stage-Gate Process A
201. Real Options - Strategic Cases R\&D Stage-Gate Process B
202. Real Options - Strategic Cases Switching Option Strategy I
203. Real Options - Strategic Cases Switching Option Strategy II
204. Trinomial Lattices - American Call
205. Trinomial Lattices - American Put
206. Trinomial Lattices - European Call
207. Trinomial Lattices - European Put
208. Trinomial Lattices - Mean Reverting American Call Option
209. Trinomial Lattices - Mean Reverting American Put Option
210. Trinomial Lattices - Mean Reverting European Call Option
211. Trinomial Lattices - Mean Reverting European Put Option
212. Trinomial Lattices - Mean Reverting American Abandonment
213. Trinomial Lattices - Mean Reverting American Contraction
214. Trinomial Lattices - Mean Reverting American Expansion
215. Trinomial Lattices - Mean Reverting American Abandonment, Contraction, Expansion
216. Trinomial Lattices - Mean Reverting Bermudan Abandonment, Contraction, Expansion
217. Trinomial Lattices - Mean Reverting Abandonment, Contraction, Expansion
218. Trinomial Lattices - M ean Reverting European Abandonment, Contraction, Expansion
219. Quadranomial Lattices - Jump Diffusion American Call
220. Quadranomial Lattices - Jump Diffusion American Put
221. Quadranomial Lattices - Jump Diffusion European Call
222. Quadranomial Lattices - Jump Diffusion European Put
223. Pentanomial Lattices - American Rainbow Call Option
224. Pentanomial Lattices - American Rainbow Put Option
225. Pentanomial Lattices - Dual Reverse Strike American Call (3D Binomial)
226. Pentanomial Lattices - Dual Reverse Strike American Put (3D Binomial)
227. Pentanomial Lattices - Dual Strike American Call (3D Binomial)
228. Pentanomial Lattices - Dual Strike American Put (3D Binomial)
229. Pentanomial Lattices - European Rainbow Call Option
230. Pentanomial Lattices - European Rainbow Put Option
231. Pentanomial Lattices - Exchange of Two Assets American Put (3D Binomial)
232. Pentanomial Lattices - Maximum of Two Assets American Call (3D Binomial)
233. Pentanomial Lattices - M aximum of Two Assets American Put (3D Binomial)
234. Pentanomial Lattices - Minimum of Two Assets American Call (3D Binomial)
235. Pentanomial Lattices - Minimum of Two Assets American Put (3D Binomial)
236. Pentanomial Lattices - Portfolio American Call (3D Binomial)
237. Pentanomial Lattices - Portfolio American Put (3D Binomial)
238. Pentanomial Lattices - Spread of Two Assets American Call (3D Binomial)
239. Pentanomial Lattices - Spread of Two Assets American Put (3D Binomial)

Risk Analysis
240. Integrated Risk Analysis
241. Interest Rate Risk
242. Portfolio Risk and Return Profile

Risk Hedging
243. Delta Gamma Hedge
244. Delta Hedge
245. Effects of Fixed versus Floating Rates
246. Foreign Exchange Cash Flow M odel
247. Foreign Exchange Exposure Hedging

Sensitivity
248. Greeks
249. Tornado and Sensitivity Charts Linear
250. Tornado and Sensitivity Nonlinear

Simulation
251. Basic Simulation M odel
252. Best Surgical Team
253. Correlated Simulation
254. Correlation Effects M odel
255. Data Fitting
256. DCF, ROI and Volatility
257. Debt Repayment and Amortization
258. Demand Curve and Elasticity Estimation
259. Infectious Diseases
260. Recruitment Budget (Negative Binomial and Multidimensional Simulation)
261. Retirement Funding with VBA Macros
262. Roulette Wheel
263. Time Value of Money

Six Sigma
264. Confidence Intervals with Hypothesis Testing
265. Control Charts ($c, n, p, u, X, X m R, R$)
266. Delta Precision
267. Design of Experiments and Combinatorics
268. Hypothesis Testing and Bootstrap Simulation
269. Sample Size Correlation
270. Sample Size DPU
271. Sample Size Mean
272. Sample Size Proportion
273. Sample Size Sigma
274. Statistical Analysis (CDF, PDF, ICDF) Hypothesis Testing
275. Statistical Capability M easures
276. Unit Capability M easures

Valuation
277. APT, BETA and CAPM
278. Buy versus Lease
279. Caps and Floors
280. Convertible Bonds
281. Financial Ratios Analysis
282. Financial Statements Analysis
283. Valuation M odel
284. Valuation - Warrant - Combined
285. Valuation - Warrant - Put Only
286. Valuation - Warrant - Warrant

Value at Risk
287. Optimized and Simulated Portfolio VaR
288. Options Delta Portfolio
289. Portfolio Operational and Capital Adequacy
290. Right Tail Capital Requirements
291. Static Covariance Method

Volatility
292. EW MA Volatility Models
293. GARCH Volatility M odels
294. Implied Volatility
295. Log Asset Returns Approach
296. Log Cash Flow Returns Approach Probability to Volatility

Yield Curve
297. CIR M odel
298. Curve Interpolation BIM
299. Curve Interpolation NS
300. Forward Rates from Spot Rates
301. Spline Interpolation and Extrapolation.xls
302. Term Structure of Volatility
303. US Treasury Risk Free Rate
304. Vasicek M odel

List of Functions

Below is a comprehensive list of the functions in Modeling Toolkit that can be accessed either through the analytical DLL libraries or in Excel. Please keep checking back at the website for a more updated list. The software is continually evolving and newer applications and models are constantly added. Finally, the applicable Risk Simulator tools applicable when using the M odeling Toolkit are also listed at the end.

1. B2AEPM arketValueAsset

M arket Value of Asset using the Asset-Equity Parity M odel.
2. B2AEPM arketValueDebt

M arket Value of Debt using the Asset-Equity Parity M odel.
3. B2AEPRequiredReturnDebt

Required Return on Risky Debt using the Asset-Equity Parity M odel.
4. B2AltDistributionCallOption

Computes the European Call option for an underlying asset returns distribution with skew and kurtosis, and is not perfectly normal. M ay return an error for unsolvable inputs.
5. B2AltDistributionPutOption

Computes the European Put option for an underlying asset returns distribution with skew and kurtosis, and is not perfectly normal. M ay return an error for unsolvable inputs.
6. B2AnnuityRate

Returns the percentage equivalent of the required periodic payment on an annuity (e.g., mortgage payments, loan repayment). Returns the percentage of the total principal at initiation.
7. B2AsianCallwithArithmeticAverageRate

An average rate option is a cash-settled option whose payoff is based on the difference between the arithmetic average value of the underlying during the life of the option and a fixed strike.
8. B2AsianCallwithGeometricAverageRate

An average rate option is a cash-settled option whose payoff is based on the difference between the geometric average value of the underlying during the life of the option and a fixed strike.
9. B2AsianPutwithArithmeticAverageRate

An average rate option is a cash-settled option whose payoff is based on the difference between a fixed strike and the arithmetic average value of the underlying during the life of the option.
10. B2AsianPutwithGeometricAverageRate

An average rate option is a cash-settled option whose payoff is based on the difference between a fixed strike and the geometric average value of the underlying during its life.
11. B2AssetExchangeAmericanOption

Option holder has the right at up to and including expiration to swap out Asset 2 and receive Asset 1, with predetermined quantities.
12. B2AssetExchangeEuropeanOption Option holder has the right at expiration to swap out Asset 2 and receive Asset 1, with predetermined quantities.
13. B2AssetOrNothingCall

At expiration, if in the money, the option holder receives the stock or asset. For a call option, as long as the stock or asset price exceeds the strike at expiration, the stock is received.
14. B2AssetOrNothingPut

At expiration, if in the money, the option holder receives the stock or asset. For a put option, stock is received only if the stock or asset value falls below the strike price.
15. B2BarrierDoubleUpInDownInCall

Valuable or knocked in-the-money only if either barrier (upper or lower) is breached, i.e., asset value is above the
upper or below the lower barriers, and the payout is in the form of a call option on the underlying asset.
16. B2BarrierDoubleUpInDownInPut

Valuable or knocked in-the-money only if either barrier (upper or lower) is breached, i.e., asset value is above the upper or below the lower barriers, and the payout is in the form of a put option on the underlying asset.
17. B2BarrierDoubleUpOutDownOutCall

Valuable or stays in-the-money only if either barrier (upper or lower barrier) is not breached, and the payout is in the form of a call option on the underlying asset.
18. B2BarrierDoubleUpOutDownOutPut

Valuable or stays in-the-money only if either barrier (upper or lower barrier) is not breached, and the payout is in the form of a put option on the underlying asset.
19. B2BarrierDownandInCall

Becomes valuable or knocked in-the-money if the lower barrier is breached, and the payout is the call option on the underlying asset. Sometimes, cash is paid at maturity assuming that the option has not been knocked in.
20. B2BarrierDownandInPut

Becomes valuable or knocked in-the-money if the lower barrier is breached, and the payout is the put option on the underlying asset. Sometimes, cash is paid at maturity assuming that the option has not been knocked in.
21. B2BarrierDownandOutCall

Valuable or in-the-money only if the lower barrier is not breached, and the payout is the call option on the underlying asset. Sometimes, cash is paid at maturity assuming that the option has not been knocked out.
22. B2BarrierDownandOutPut

Valuable or in-the-money only if the lower barrier is not breached, and the payout is the put option on the underlying asset. Sometimes, cash is paid at maturity assuming that the option has not been knocked out.
23. B2BarrierUpandlnCall

Becomes valuable or knocked in-the-money if the upper barrier is breached, and the payout is the call option on the underlying asset. Sometimes, cash is paid at maturity assuming that the option has not been knocked in.
24. B2BarrierUpandlnPut

Becomes valuable or knocked in-the-money if the upper barrier is breached, and the payout is the put option on the underlying asset. Sometimes, cash is paid at maturity assuming that the option has not been knocked in.
25. B2BarrierUpandOutCall

Valuable or in-the-money only if the upper barrier is not breached, and the payout is the call option on the underlying asset. Sometimes, cash is paid at maturity assuming that the option has not been knocked out.
26. B2BarrierUpandOutPut

Valuable or in-the-money only if the upper barrier is not breached, and the payout is the put option on the underlying asset. Sometimes, cash is paid at maturity assuming that the option has not been knocked out.
27. B2BDTAmericanCallonDebtLattice

Computes the American Call option on interest-based
instruments and debt or bonds, and creates the entire pricing lattice.
28. B2BDTAmericanCallonDebtValue

Computes the American Call option value on interest-based instruments and debt or bonds, and returns only one value instead of the entire lattice.
29. B2BDTAmericanPutonDebtLattice

Computes the American Put option on interest-based instruments and debt or bonds, and creates the entire pricing lattice.
30. B2BDTAmericanPutonDebtValue

Computes the American Put option value on interest-based instruments and debt or bonds, and returns only one value instead of the entire lattice.
31. B2BDTCallableDebtPriceLattice

Computes the revised price lattice of a callable debt such that the options adjusted spread can be imputed. Allows for changing interest and interest volatilities over time.
32. B2BDTCallableDebtPriceValue

Computes the present value of a coupon bond/debt that is callable, to see the differences in value from a non-callable debt. The lattice can be computed using the function call: B2BDTCallableDebtPriceLattice.
33. B2BDTCallableSpreadValue

Computes the option adjusted spread, i.e., the additional premium that should be charged on the callable option provision.
34. B2BDTEuropeanCallonDebtLattice

Computes the European Call option on interest-based instruments and debt or bonds, and creates the entire pricing lattice.
35. B2BDTEuropeanCallonDebtValue

Computes the European Call option value on interest-based instruments and debt or bonds, and returns only one value instead of the entire lattice.
36. B2BDTEuropeanPutonDebtLattice

Computes the European Put option on interest-based instruments and debt or bonds, and creates the entire pricing lattice.
37. B2BDTEuropeanPutonDebtValue

Computes the European Put option value on interest-based instruments and debt or bonds, and returns only one value instead of the entire lattice.
38. B2BDTFloatingCouponPriceLattice

Value of the floater bond's lattice (coupon rate is floating and can be directly or inversely related to interest rates; e.g., rates drop, coupon increases, the bond appreciates in price and the yield increases).
39. B2BDTFloatingCouponPriceValue

Value of the floater bond (coupon rate is floating and can be directly or inversely related to interest rates; e.g., rates drop, coupon increases, the bond appreciates in price and the yield increases).
40. B2BDTNoncallableDebtPriceLattice

Computes the pricing lattice of a coupon bond/debt that is not callable, to see the differences in value from a callable debt.
41. B2BDTNoncallableDebtPriceValue

Computes the present value of a coupon bond/debt that is not callable, to see the differences from a callable debt.
42. B2BDTInterestRateLattice

Computes the short rate interest lattice based on a term structure of interest rates and changing interest volatilities, as a means to compute option values.
43. B2BDTNonCallableSpreadValue

Computes the straight spread on a bond that is non-callable in order to compare it with the option provision of an option adjusted spread model.

B2BDTZeroPriceLattice
Computes the straight price lattice of zero bonds based on a term structure of interest rates and changing interest volatilities, as a means to compute interest-based option values.
45. B2BDTZeroPriceLattice2

Computes the straight price lattice of zero bonds based on a term structure of interest rates and changing interest volatilities, as a means to compute interest-based option values. Returns the same results as the B2BDTZeroPriceLattice function but requires interest rates and interest volatilities as inputs, rather than the entire interest rate lattice.
46. B2BDTZeroPriceValue

Computes the straight price of zero bonds at time zero, based on a term structure of interest rates and changing interest volatilities, as a means to compute interest-based option values.
47. B2BinaryDownAndInAssetAtExpirationOrNothing

Binary digital instrument receiving the asset at expiration, only if a corresponding asset hits a lower barrier or receives nothing otherwise. DT is monitoring steps: $1 / 12$ monthly, $1 / 52$ weekly, 1/250 daily, 0 continuously
48. B2BinaryDownAndInAssetAtExpirationOrNothingCall

Binary digital call option receiving the asset at expiration if the asset hits a lower barrier or receives nothing otherwise. DT is monitoring steps: $1 / 12$ monthly, $1 / 52$ weekly, $1 / 250$ daily, 0 continuously
49. B2BinaryDownAndInAssetAtExpirationOrNothingPut

Binary digital put option receiving the asset at expiration if the asset hits a lower barrier or receives nothing otherwise.
DT is monitoring steps: $1 / 12$ monthly, $1 / 52$ weekly, $1 / 250$ daily, 0 continuously
50. B2BinaryDownAndInAssetAtHitOrNothing

Binary digital instrument receiving the asset when it hits a lower barrier or receives nothing otherwise. DT is monitoring steps: 1/12 monthly, $1 / 52$ weekly, 1/250 daily, 0 continuously
51. B2BinaryDownAndInCashAtExpirationOrNothing

Binary digital instrument receiving a cash amount at expiration, only if a corresponding asset hits a lower barrier or receives nothing otherwise. DT is monitoring steps: $1 / 12$ monthly, $1 / 52$ weekly, $1 / 250$ daily, 0 continuously
52. B2BinaryDownAndInCashAtExpirationOrNothingCall

Binary digital call option receiving the cash at expiration if
the asset hits a lower barrier or receives nothing otherwise.
DT is monitoring steps: $1 / 12$ monthly, $1 / 52$ weekly, $1 / 250$ daily,
0 continuously
53. B2BinaryDownAndInCashAtExpirationOrNothingPut

Binary digital put option receiving the cash at expiration if the asset hits a lower barrier or receives nothing otherwise. DT is monitoring steps: $1 / 12$ monthly, $1 / 52$ weekly, $1 / 250$ daily, 0 continuously
54. B2BinaryDownAndInCashAtHitOrNothing

Binary digital instrument receiving a cash amount when a corresponding asset hits a lower barrier or receives nothing otherwise. DT is monitoring steps: $1 / 12$ monthly, $1 / 52$ weekly, 1/250 daily, 0 continuously
55. B2BinaryDownAndOutAssetAtExpirationOrNothing

Binary digital instrument receiving the asset at expiration, only if a corresponding asset does not hit a lower barrier or receives nothing otherwise. DT is monitoring steps: $1 / 12$ monthly, $1 / 52$ weekly, $1 / 250$ daily, 0 continuously
56. B2BinaryDownAndOutAssetAtExpirationOrNothingCall

Binary digital call options receiving the asset at expiration, only if a corresponding asset does not hit a lower barrier or receives nothing otherwise. DT is monitoring steps: $1 / 12$ monthly, 1/52 weekly, $1 / 250$ daily, 0 continuously
57. B2BinaryDownAndOutAssetAtExpirationOrNothingPut

Binary digital put options receiving the asset at expiration, only if a corresponding asset does not hit a lower barrier or receives nothing otherwise. DT is monitoring steps: $1 / 12$ monthly, 1/52 weekly, 1/250 daily, 0 continuously
58. B2BinaryDownAndOutCashAtExpirationOrNothing

Binary digital instrument receiving a cash amount at expiration, only if a corresponding asset does not hit a lower barrier or receives nothing otherwise. DT is monitoring steps: 1/12 monthly, 1/52 weekly, 1/250 daily, 0 continuously
59. B2BinaryDownAndOutCashAtExpirationOrNothingCall Binary digital call option receiving a cash amount at expiration, only if a corresponding asset does not hit a lower barrier or receives nothing otherwise. DT is monitoring steps: 1/12 monthly, 1/52 weekly, 1/250 daily, 0 continuously
60. B2BinaryDownAndOutCashAtExpirationOrNothingPut

Binary digital put option receiving a cash amount at expiration, only if a corresponding asset does not hit a lower barrier or receives nothing otherwise. DT is monitoring steps: $1 / 12$ monthly, $1 / 52$ weekly, $1 / 250$ daily, 0 continuously
61. B2BinaryUpAndInAssetAtExpirationOrNothing

Binary digital instrument receiving the asset at expiration, only if a corresponding asset hits an upper barrier or receives nothing otherwise. DT is monitoring steps: $1 / 12$ monthly, $1 / 52$ weekly, 1/250 daily, 0 continuously
62. B2BinaryUpAndInAssetAtExpirationOrNothingCall Binary digital call option receiving the asset at expiration if the asset hits an upper barrier or receives nothing otherwise. DT is monitoring steps: $1 / 12$ monthly, $1 / 52$ weekly, $1 / 250$ daily, 0 continuously
63. B2BinaryUpAndInAssetAtExpirationOrNothingPut

Binary digital put option receiving the asset at expiration if the asset hits an upper barrier or receives nothing otherwise. DT is monitoring steps: $1 / 12$ monthly, $1 / 52$ weekly, $1 / 250$ daily, 0 continuously
64. B2BinaryUpAndInAssetAtHitOrNothing

Binary digital instrument receiving the asset when it hits an upper barrier or receives nothing otherwise. DT is monitoring steps: $1 / 12$ monthly, $1 / 52$ weekly, $1 / 250$ daily, 0 continuously
65. B2BinaryUpAndInCashAtExpirationOrNothing

Binary digital instrument receiving a cash amount at expiration, only if a corresponding asset hits an upper barrier or receives nothing otherwise. DT is monitoring steps: $1 / 12$ monthly, $1 / 52$ weekly, $1 / 250$ daily, 0 continuously
66. B2BinaryUpAndInCashAtExpirationOrNothingCall

Binary digital call option receiving the cash at expiration if the asset hits an upper barrier or receives nothing otherwise. DT is monitoring steps: $1 / 12$ monthly, $1 / 52$ weekly, $1 / 250$ daily, 0 continuously
67. B2BinaryUpAndInCashAtExpirationOrNothingPut Binary digital put option receiving the cash at expiration if the asset hits an upper barrier or receives nothing otherwise. DT is monitoring steps: $1 / 12$ monthly, $1 / 52$ weekly, $1 / 250$ daily, 0 continuously
68. B2BinaryUpAndInCashAtHitOrNothing

Binary digital instrument receiving a cash amount when a corresponding asset hits an upper barrier or receives nothing otherwise. DT is monitoring steps: $1 / 12$ monthly, $1 / 52$ weekly, 1/250 daily, 0 continuously
69. B2BinaryUpAndOutAssetAtExpirationOrNothing

Binary digital instrument receiving the asset at expiration, only if a corresponding asset does not hit an upper barrier or receives nothing otherwise. DT is monitoring steps: $1 / 12$ monthly, 1/52 weekly, 1/250 daily, 0 continuously
70. B2BinaryUpAndOutAssetAtExpirationOrNothingCall Binary digital call options receiving the asset at expiration, only if a corresponding asset does not hit an upper barrier or receives nothing otherwise. DT is monitoring steps: $1 / 12$ monthly, $1 / 52$ weekly, $1 / 250$ daily, 0 continuously
71. B2BinaryUpAndOutAssetAtExpirationOrNothingPut Binary digital put options receiving the asset at expiration, only if a corresponding asset does not hit an upper barrier or receives nothing otherwise. DT is monitoring steps: $1 / 12$ monthly, $1 / 52$ weekly, $1 / 250$ daily, 0 continuously
72. B2BinaryUpAndOutCashAtExpirationOrNothing

Binary digital instrument receiving a cash amount at expiration, only if a corresponding asset does not hit an upper barrier or receives nothing otherwise. DT is monitoring steps: 1/12 monthly, $1 / 52$ weekly, 1/250 daily, 0 continuously
73. B2BinaryUpAndOutCashAtExpirationOrNothingCall

Binary digital call option receiving a cash amount at expiration, only if a corresponding asset does not hit an upper barrier or receives nothing otherwise. DT is monitoring steps: 1/12 monthly, $1 / 52$ weekly, 1/250 daily, 0 continuously
74. B2BinaryUpAndOutCashAtExpirationOrNothingPut

Binary digital put option receiving a cash amount at expiration, only if a corresponding asset does not hit an upper barrier or receives nothing otherwise. DT is monitoring steps: $1 / 12$ monthly, $1 / 52$ weekly, $1 / 250$ daily, 0 continuously.
75. B2Binomial3DAmericanDualStrikeCallOption

Returns the American option with the payoff [Max(Q2S2-X2,Q1S1-X1)] and valued using a 3D binomial lattice model.
76. B2Binomial3DAmericanDualStrikePutOption

Returns the American option with the payoff [Max(X2-Q2S2,X1-Q1S1)] and valued using a 3D binomial lattice model.
77. B2Binomial3DEuropeanDualStrikeCallOption

Returns the European option with the payoff [Max(Q2S2X2, Q1S1-X1)] and valued using a 3D binomial lattice model.
78. B2Binomial3DEuropeanDualStrikePutOption

Returns the European option with the payoff [Max(X2-Q2S2,X1-Q1S1)] and valued using a 3D binomial lattice model.
79. B2Binomial3DAmericanExchangeOption

Returns the American and European call and put option (same values exist for all types) with the payoff [Q2S2-Q1S1] and valued using a 3D binomial lattice model.
80. B2Binomial3DAmericanM aximumTwoAssetsCallOption Returns the American option with the payoff [$\mathrm{Max}(\mathrm{Q} 2 \mathrm{~S} 2, \mathrm{Q} 1 \mathrm{~S} 1)-\mathrm{X}]$ and valued using a 3D binomial lattice model.
81. B2Binomial3DAmericanM aximumTwoAssetsPutOption

Returns the American option with the payoff [XMax(Q2S2,Q1S1)] and valued using a 3D binomial lattice model.
82. B2Binomial3DEuropeanM aximumTwoAssetsCallOption

Returns the European option with the payoff [Max(Q2S2,Q1S1)-X] and valued using a 3D binomial lattice model.
83. B2Binomial3DEuropeanM aximumTwoAssetsPutOption

Returns the European option with the payoff [XMax(Q2S2,Q1S1)] and valued using a 3D binomial lattice model.
84. B2Binomial3DAmericanM inimumTwoAssetsCallOption

Returns the American option with the payoff [M in(Q2S2,Q1S1)-X] and valued using a 3D binomial lattice model.
85. B2Binomial3DAmericanM inimumTwoAssetsPutOption Returns the American option with the payoff [XMin(Q2S2,Q1S1)] and valued using a 3D binomial lattice model.
86. B2Binomial3DEuropeanM inimumTwoAssetsCallOption

Returns the European option with the payoff [M in(Q2S2, Q1S1)-X] and valued using a 3D binomial lattice model.
87. B2Binomial3DEuropeanM inimumTwoAssetsPutOption Returns the European option with the payoff [X-

Min(Q2S2,Q1S1)] and valued using a 3D binomial lattice model.
88. B2Binomial3DAmericanPortfolioCallOption

Returns the American option with the payoff [Q2S2+Q1S1-X] and valued using a 3D binomial lattice model.
89. B2Binomial3DAmericanPortfolioPutOption

Returns the American option with the payoff [$\mathrm{X}-\mathrm{Q} 2 \mathrm{~S} 2+\mathrm{Q} 1 \mathrm{~S} 1$] and valued using a 3 D binomial lattice model.
90. B2Binomial3DEuropeanPortfolioCallOption

Returns the European option with the payoff [Q2S2+Q1S1-X] and valued using a 3 D binomial lattice model.
91. B2Binomial3DEuropeanPortfolioPutOption

Returns the European option with the payoff [X-Q2S2+Q1S1] and valued using a 3D binomial lattice model.
92. B2Binomial3DAmericanReverseDualStrikeCallOption

Returns the American option with the payoff [Max(X2-Q2S2,Q1S1-X1)] and valued using a 3D binomial lattice model.
93. B2Binomial3DAmericanReverseDualStrikePutOption

Returns the American option with the payoff [Max(Q2S2-
$\mathrm{X} 2, \times 1-\mathrm{Q} 1 \mathrm{S1})$] and valued using a 3 D binomial lattice model.
94. B2Binomial3DEuropeanReverseDualStrikeCallOption

Returns the European option with the payoff [Max(X2-Q2S2,Q1S1-X1)] and valued using a 3D binomial lattice model.
95. B2Binomial3DEuropeanReverseDualStrikePutOption

Returns the American option with the payoff [Max(Q2S2-
$\mathrm{X} 2, \mathrm{X1}-\mathrm{Q} 151)]$ and valued using a 3D binomial lattice model.
96. B2Binomial3DAmericanSpreadCallOption

Returns the American option with the payoff [Q1S1-Q2S2-X] and valued using a 3D binomial lattice model.
97. B2Binomial3DAmericanSpreadPutOption

Returns the American option with the payoff [X+Q2S2-Q1S1] and valued using a 3D binomial lattice model.
98. B2Binomial3DEuropeanSpreadCallOption

Returns the European option with the payoff [Q1S1-Q2S2-X]
and valued using a 3 D binomial lattice model.
99. B2Binomial3DEuropeanSpreadPutOption

Returns the European option with the payoff [X+Q2S2-Q1S1] and valued using a 3 D binomial lattice model.
100. B2BinomialAdjustedBarrierSteps

Computes the correct binomial lattice steps to use for convergence and barrier matching when running a barrier option.
101. B2BinomialAmericanCall

Returns the American call option with a continuous dividend yield using a binomial lattice, where the option can be exercised at any time up to and including maturity.
102. B2BinomialAmericanPut

Returns the American put option with a continuous dividend yield using a binomial lattice, where the option can be exercised at any time up to and including maturity.
103. B2BinomialBermudanCall

Returns the American call option with a continuous dividend yield using a binomial lattice, where the option can be exercised at any time up to and including maturity except during the vesting period.
104. B2BinomialBermudanPut

Returns the American put option with a continuous dividend yield using a binomial lattice, where the option can be exercised at any time up to and including maturity except during the vesting period.
105. B2BinomialEuropeanCall

Returns the European call option with a continuous dividend yield using a binomial lattice, where the option can be exercised only at maturity.
106. B2BinomialEuropeanPut

Returns the European put option with a continuous dividend
yield using a binomial lattice, where the option can be exercised only at maturity.
107. B2BlackCallOptionM odel

Returns the Black model (modified Black-Scholes-M erton) for forward contracts and interest-based call options.
108. B2BlackPutOptionM odel

Returns the Black model (modified Black-Scholes-M erton) for forward contracts and interest-based put options.
109. B2BlackFuturesCallOption

Computes the value of commodities futures call option given the value of the futures contract.
110. B2BlackFuturesPutOption

Computes the value of commodities futures put option given the value of the futures contract.
111. B2BlackScholesCall

European Call Option using Black-Scholes-M erton M odel.
112. B2BlackScholesProbabilityAbove

Computes the expected probability the stock price will rise
above the strike price under a Black-Scholes paradigm.
113. B2BlackScholesPut

European Put Option using Black-Scholes-M erton M odel.
114. B2BondCIRBondDiscountFactor

Returns the discount factor on a bond or risky debt using the Cox-Ingersoll-Ross model, accounting for mean-reverting interest rates.
115. B2BondCIRBondPrice

Cox-Ross model on Zero Coupon Bond Pricing assuming no arbitrage and mean-reverting interest rates.
116. B2BondCIRBondYield

Cox-Ross model on Zero Coupon Bond Yield assuming no arbitrage and mean-reverting interest rates.
117. B2BondConvexityContinuous

Returns the debt's Convexity of second order sensitivity using a series of cash flows and current interest rate, with continuous discounting.
118. B2BondConvexityDiscrete

Returns the debt's Convexity of second order sensitivity using a series of cash flows and current interest rate, with discrete discounting.
119. B2BondConvexityYTM Continuous

Returns debt's Convexity or second order sensitivity using an internal Yield to M aturity of the cash flows, with continuous discounting.
120. B2BondConvexityYTM Discrete

Returns debt's Convexity or second order sensitivity using an internal Yield to Maturity of the cash flows, with discrete discounting.
121. B2BondDurationContinuous

Returns the debt's first order sensitivity Duration measure using continuous discounting.
122. B2BondDurationDiscrete

Returns the debt's first order sensitivity Duration measure using discrete discounting.
123. B2BondHullWhiteBondCallOption

Values a European call option on a bond where the interest rates are stochastic and mean-reverting. Make sure Bond M aturity > Option M aturity.
124. B2BondHullWhiteBondPutOption

Values a European put option on a bond where the interest rates are stochastic and mean-reverting. Make sure Bond M aturity > Option M aturity.
125. B2BondM acaulayDuration

Returns the debt's first order sensitivity Macaulay's Duration measure.
126. B2BondM ertonBondPrice

Bond Price using Merton Stochastic Interest and Stochastic Asset M odel.
127. B2BondM odifiedDuration

Returns the debt's first order sensitivity Modified Duration measure.
128. B2BondPriceContinuous

Returns the Bond Price of a cash flow series given the time and discount rate, using Continuous discounting.
129. B2BondPriceDiscrete

Returns the Bond Price of a cash flow series given the time and discount rate, using discrete discounting.
130. B2BondVasicekBondCallOption

Values a European call option on a bond where the interest rates are stochastic and mean-reverting to a long-term rate.
M ake sure Bond M aturity >0 ption M aturity.
131. B2BondVasicekBondPrice

Vasicek Zero Coupon Price assuming no arbitrage and meanreverting interest rates.
132. B2BondVasicekBondPutOption

Values a European put option on a bond where the interest rates are stochastic and mean-reverting to a long-term rate.
M ake sure Bond M aturity >0 ption M aturity.
133. B2BondVasicekBondYield

Vasicek Zero Coupon Yield assuming no arbitrage and meanreverting interest rates.
134. B2BondYTM Continuous

Returns Bond's Yield to Maturity assuming Continuous discounting.
135. B2BondYTM Discrete

Returns Bond's Yield to Maturity assuming discrete discounting.
136. B2CallDelta

Returns the option valuation sensitivity Delta (a call option value's sensitivity to changes in the asset value).
137. B2CallGamma

Returns the option valuation sensitivity Gamma (a call option value's sensitivity to changes in the delta value).
138. B2CallOptionOnTheM ax

The maximum values at expiration of both assets are used in option exercise, where the call option payoff at expiration is the maximum price between Asset 1 and Asset 2 against the strike price.
139. B2CallOptionOnTheM in

The minimum values at expiration of both assets are used in option exercise, where the call option payoff at expiration is the minimum price between Asset 1 and Asset 2 against the strike price.
140. B2CallRho

Returns the option valuation sensitivity Rho (a call option value's sensitivity to changes in the interest rate).
141. B2CallTheta

Returns the option valuation sensitivity Theta (a call option value's sensitivity to changes in the maturity).
142. B2CallVega

Returns the option valuation sensitivity Vega (a call option value's sensitivity to changes in the volatility).
143. B2CashOrNothingCall

At expiration, if the option is in the money, the option holder receives a predetermined cash payment. For a call option, as long as the stock or asset price exceeds the strike at expiration, cash is received.
144. B2CashOrNothingPut

At expiration, if the option is in the money, the option holder receives a predetermined cash payment. For a put option, cash is received only if the stock or asset value falls below the strike price.
145. B2ChooserBasicOption

Holder chooses if the option is a call or a put by the chooser time, with the same strike price and maturity. Typically cheaper than buying a call and a put together while providing the same level of hedge.
146. B2ChooserComplexOption

Holder gets to choose if the option is a call or a put within the Chooser Time, with different strike prices and maturities. Typically cheaper than buying a call and a put, while providing the same level of hedge.
147. B2ClosedFormAmericanCall

Returns the American option approximation model with a continuous dividend yield call option.
148. B2ClosedFormAmericanPut

Returns the American option approximation model with a continuous dividend yield put option.
149. B2CoefficientofVariationPopulation

Computes the population coefficient of variation (standard deviation of the sample divided by the mean), to obtain a relative measure of risk and dispersion
150. B2CoefficientofVariationSample

Computes the sample coefficient of variation (standard deviation of the sample divided by the mean), to obtain a relative measure of risk and dispersion
151. B2CommodityCallOptionM odel

Computes the value of a commodity-based call option based on spot and futures market, and accounting for volatility of the forward rate.
152. B2CommodityPutOptionM odel

Computes the value of a commodity-based put option based on spot and futures market, and accounting for volatility of the forward rate.
153. B2CompoundOptionsCallonCall

A compound option allowing the holder to buy (call) a call option with some maturity, in the future within the option maturity period, for a specified strike price on the option.
154. B2CompoundOptionsCallonPut

A compound option allowing the holder to buy (call) a put option with some maturity, in the future within the option maturity period, for a specified strike price on the option.
155. B2CompoundOptionsPutonCall

A compound option allowing the holder to sell (put) a call option with some maturity, in the future within the option maturity period, for a specified strike price on the option.
156. B2CompoundOptionsPutonPut

A compound option allowing the holder to sell (put) a call option with some maturity, in the future within the option maturity period, for a specified strike price on the option.
157. B2ConvenienceYield

The convenience yield is simply the rate differential between a non-arbitrage futures and spot price and a real-life fair market value of the futures price.
158. B2ConvertibleBondAmerican

Computes the value of a convertible bond using binomial lattices, and accounting for the stock's volatility and dividend yield, as well as the bond's credit spread above risk-free.
159. B2ConvertibleBondEuropean

Computes the value of a convertible bond using binomial lattices, and accounting for the stock's volatility and dividend yield, as well as the bond's credit spread above risk-free.
160. B2CreditAcceptanceCost

Computes the risk-adjusted cost of accepting a new credit line with a probability of default.
161. B2CreditAssetSpreadCallOption

Provides protection from an increase in spread but ceases to exist if the underlying asset defaults and is based on the price of the asset.
162. B2CreditAssetSpreadPutOption

Provides protection from an decrease in spread but ceases to exist if the underlying asset defaults and is based on the price of the asset.
163. B2CreditDefaultSwapSpread

Returns the valuation of a credit default swap CDS spread,
allowing the holder to sell a bond/debt at par value when a credit event occurs.
164. B2CreditDefaultSwapCorrelatedBondandSwapPrice

Computes the valuation of a bond with a credit default swap where both parties are correlated and each has a probability of default and possible recovery rates. At default, the holder receives the notional principal or par value of the bond.
165. B2CreditDefaultSwapCorrelatedBondPrice

Computes the valuation of a bond without any credit default swap where the bond or debt has a probability of default and possible recovery rate.
166. B2CreditDefaultSwapCorrelatedSwapPrice

Computes the price of a credit default swap where both parties are correlated and each has a probability of default and possible recovery rates. At default, the holder receives the notional principal or par value of the bond.
167. B2CreditRatingW idth

Computes the credit ratings width to generate the credit ratings table.
168. B2CreditRejectionCost

Computes the risk-adjusted cost of rejecting a new credit line with a probability of default.
169. B2CreditRiskShortfall

Returns the Credit Risk Shortfall given probability of default and recovery rates.
170. B2CreditSpreadCallOption

Provides protection from an increase in spread but ceases to exist if the underlying asset defaults. Only credit default swaps can cover default events (CSOs are sometimes combined with CDSs).
171. B2CreditSpreadPutOption

Provides protection from an decrease in spread but ceases to exist if the underlying asset defaults. Only credit default swaps can cover default events (CSOs are sometimes combined with CDSs).
172. B2CubicSpline

Interpolates and extrapolates the unknown Y values (based on the required X value) given some series of known X and Y values, and can be used to interpolate inside the data sample or extrapolate outside the known sample.
173. B2CurrencyCallOption

Option to exchange foreign currency into domestic currency by buying domestic currency (selling foreign currency) at a set exchange rate on a specified date. Exchange rate is foreign currency to domestic currency.
174. B2CurrencyForwardCallOption Computes the value of a currency forward call option.
175. B2CurrencyForwardPutOption

Computes the value of a currency forward put option.
176. B2CurrencyPutOption

Option to exchange domestic currency into foreign currency by selling domestic currency (buying foreign currency) at a set exchange rate on a specified date. Exchange rate is foreign currency to domestic currency.
177. B2DeltaGammaHedgeCallBought

Computes the total amount of call values that has to be bought to perform a Delta-Gamma neutral hedge. Returns a negative value indicating cash outflow.
178. B2DeltaGammaHedgeCallSold

Computes the single unit of call value that has to be sold to perform a Delta-Gamma neutral hedge. Returns a positive value indicating cash inflow.
179. B2DeltaGammaHedgeM oneyBorrowed

Computes the amount of money that has to be borrowed to perform a Delta-Gamma neutral hedge. Returns a positive value indicating cash inflow.
180. B2DeltaGammaHedgeSharesBought

Computes the total value of stocks that has to be bought to
perform a Delta-Gamma neutral hedge. Returns a negative value indicating cash outflow.
181. B2DeltaHedgeCallSold

Computes the single unit of call value that has to be sold to perform a Delta-neutral hedge. Returns a positive value indicating cash inflow.
182. B2DeltaHedgeM oneyBorrowed

Computes the amount of money that has to be borrowed to perform a Delta-neutral hedge. Returns a positive value indicating cash inflow.
183. B2DeltaHedgeSharesBought

Computes the total value of stocks that has to be bought to perform a Delta-neutral hedge. Returns a negative value indicating cash outflow.
184. B2DistributionBernoulliKurtosis

Returns the Bernoulli distribution's theoretical excess kurtosis (fourth moment), measuring the peakedness of the distribution and its extreme tail events. An excess kurtosis of 0 implies a normal tail.
185. B2DistributionBernoulliM ean

Returns the Bernoulli distribution's theoretical mean or expected value (first moment), measuring the central tendency of the distribution.
186. B2DistributionBernoulliSkew

Returns the Bernoulli distribution's theoretical skew (third moment), measuring the direction of the distribution's tail. Positive (negative) skew means mean exceeds (is less than) median and the tail points to the right (left).
187. B2DistributionBernoulliStdev

Returns the Bernoulli distribution's theoretical standard deviation (second moment), measuring the width and average dispersion of all points around the mean.
188. B2DistributionBetaKurtosis

Returns the Beta distribution's theoretical excess kurtosis (fourth moment), measuring the peakedness of the distribution and its extreme tail events. An excess kurtosis of 0 implies a normal tail.
189. B2DistributionBetaM ean

Returns the Beta distribution's theoretical mean or expected value (first moment), measuring the central tendency of the distribution.
190. B2DistributionBetaSkew

Returns the Beta distribution's theoretical skew (third moment), measuring the direction of the distribution's tail. Positive (negative) skew means mean exceeds (is less than) median and the tail points to the right (left).
191. B2DistributionBetaStdev

Returns the Beta distribution's theoretical standard deviation (second moment), measuring the width and average dispersion of all points around the mean.
192. B2DistributionBinomialKurtosis

Returns the Binomial distribution's theoretical excess kurtosis (fourth moment), measuring the peakedness of the distribution and its extreme tail events. An excess kurtosis of 0 implies a normal tail.
193. B2DistributionBinomialM ean

Returns the Binomial distribution's theoretical mean or expected value (first moment), measuring the central tendency of the distribution.
194. B2DistributionBinomialSkew

Returns the Binomial distribution's theoretical skew (third moment), measuring the direction of the distribution's tail. Positive (negative) skew means mean exceeds (is less than) median and the tail points to the right (left).
195. B2DistributionBinomialStdev

Returns the Binomial distribution's theoretical standard deviation (second moment), measuring the width and average dispersion of all points around the mean.
196. B2DistributionCauchyKurtosis

Returns the Cauchy distribution's theoretical excess kurtosis (fourth moment), measuring the peakedness of the distribution and its extreme tail events. An excess kurtosis of 0 implies a normal tail.
197. B2DistributionCauchyM ean

Returns the Cauchy distribution's theoretical mean or expected value (first moment), measuring the central tendency of the distribution.
198. B2DistributionCauchySkew

Returns the Cauchy distribution's theoretical skew (third moment), measuring the direction of the distribution's tail. Positive (negative) skew means mean exceeds (is less than) median and the tail points to the right (left).
199. B2DistributionCauchyStdev

Returns the Cauchy distribution's theoretical standard deviation (second moment), measuring the width and average dispersion of all points around the mean.
200. B2DistributionChiSquareKurtosis

Returns the Chi-Square distribution's theoretical excess kurtosis (fourth moment), measuring the peakedness of the distribution and its extreme tail events. An excess kurtosis of 0 implies a normal tail.
201. B2DistributionChiSquareM ean

Returns the Chi-Square distribution's theoretical mean or expected value (first moment), measuring the central tendency of the distribution.
202. B2DistributionChiSquareSkew

Returns the Chi-Square distribution's theoretical skew (third moment), measuring the direction of the distribution's tail. Positive (negative) skew means mean exceeds (is less than) median and the tail points to the right (left).
203. B2DistributionChiSquareStdev

Returns the Chi-Square distribution's theoretical standard deviation (second moment), measuring the width and average dispersion of all points around the mean.
204. B2DistributionDiscreteUniformKurtosis

Returns the Discrete Uniform distribution's theoretical excess kurtosis (fourth moment), measuring the peakedness of the distribution and its extreme tail events. An excess kurtosis of 0 implies a normal tail.
205. B2DistributionDiscreteUniformM ean

Returns the Discrete Uniform distribution's theoretical mean or expected value (first moment), measuring the central tendency of the distribution.
206. B2DistributionDiscreteUniformSkew

Returns the Discrete Uniform distribution's theoretical skew (third moment), measuring the direction of the distribution's tail. Positive (negative) skew means mean exceeds (is less than) median and the tail points to the right (left).
207. B2DistributionDiscreteUniformStdev

Returns the Discrete Uniform distribution's theoretical standard deviation (second moment), measuring the width and average dispersion of all points around the mean.
208. B2DistributionExponentialKurtosis

Returns the Exponential distribution's theoretical excess kurtosis (fourth moment), measuring the peakedness of the distribution and its extreme tail events. An excess kurtosis of 0 implies a normal tail.
209. B2DistributionExponentialM ean

Returns the Exponential distribution's theoretical mean or expected value (first moment), measuring the central tendency of the distribution.
210. B2DistributionExponentialSkew

Returns the Exponential distribution's theoretical skew (third moment), measuring the direction of the distribution's tail. Positive (negative) skew means mean exceeds (is less than) median and the tail points to the right (left).
211. B2DistributionExponentialStdev

Returns the Exponential distribution's theoretical standard deviation (second moment), measuring the width and average dispersion of all points around the mean.
212. B2DistributionFKurtosis

Returns the F distribution's theoretical excess kurtosis (fourth moment), measuring the peakedness of the distribution and its extreme tail events. An excess kurtosis of 0 implies a normal tail.
213. B2DistributionFM ean

Returns the F distribution's theoretical mean or expected value (first moment), measuring the central tendency of the distribution.
214. B2DistributionFSkew

Returns the F distribution's theoretical skew (third moment),
measuring the direction of the distribution's tail. Positive (negative) skew means mean exceeds (is less than) median and the tail points to the right (left).
215. B2DistributionFStdev

Returns the F distribution's theoretical standard deviation (second moment), measuring the width and average dispersion of all points around the mean.
216. B2DistributionGammaKurtosis

Returns the Gamma distribution's theoretical excess kurtosis (fourth moment), measuring the peakedness of the distribution and its extreme tail events. An excess kurtosis of 0 implies a normal tail.
217. B2DistributionGammaM ean

Returns the Gamma distribution's theoretical mean or expected value (first moment), measuring the central tendency of the distribution.
218. B2DistributionGammaSkew

Returns the Gamma distribution's theoretical skew (third moment), measuring the direction of the distribution's tail. Positive (negative) skew means mean exceeds (is less than) median and the tail points to the right (left).
219. B2DistributionGammaStdev

Returns the Gamma distribution's theoretical standard deviation (second moment), measuring the width and average dispersion of all points around the mean.
220. B2DistributionGeometricKurtosis

Returns the Geometric distribution's theoretical excess kurtosis (fourth moment), measuring the peakedness of the distribution and its extreme tail events. An excess kurtosis of 0 implies a normal tail.
221. B2DistributionGeometricM ean

Returns the Geometric distribution's theoretical mean or expected value (first moment), measuring the central tendency of the distribution.
222. B2DistributionGeometricSkew

Returns the Geometric distribution's theoretical skew (third moment), measuring the direction of the distribution's tail. Positive (negative) skew means mean exceeds (is less than) median and the tail points to the right (left).
223. B2DistributionGeometricStdev

Returns the Geometric distribution's theoretical standard deviation (second moment), measuring the width and average dispersion of all points around the mean.
224. B2DistributionGumbelM axKurtosis

Returns the Gumbel Max distribution's theoretical excess kurtosis (fourth moment), measuring the peakedness of the distribution and its extreme tail events. An excess kurtosis of 0 implies a normal tail.
225. B2DistributionGumbelM axM ean

Returns the Gumbel Max distribution's theoretical mean or expected value (first moment), measuring the central tendency of the distribution.
226. B2DistributionGumbelM axSkew

Returns the Gumbel Max distribution's theoretical skew (third moment), measuring the direction of the distribution's tail. Positive (negative) skew means mean exceeds (is less than) median and the tail points to the right (left).
227. B2DistributionGumbelM axStdev

Returns the Gumbel Max distribution's theoretical standard deviation (second moment), measuring the width and average dispersion of all points around the mean.
228. B2DistributionGumbelM inKurtosis

Returns the Gumbel Min distribution's theoretical excess kurtosis (fourth moment), measuring the peakedness of the distribution and its extreme tail events. An excess kurtosis of 0 implies a normal tail.
229. B2DistributionGumbelM inM ean

Returns the Gumbel Min distribution's theoretical mean or expected value (first moment), measuring the central tendency of the distribution.
230. B2DistributionGumbelM inSkew

Returns the Gumbel M in distribution's theoretical skew (third moment), measuring the direction of the distribution's tail. Positive (negative) skew means mean exceeds (is less than) median and the tail points to the right (left).
231. B2DistributionGumbelM inStdev

Returns the Gumbel Min distribution's theoretical standard deviation (second moment), measuring the width and average dispersion of all points around the mean.
232. B2DistributionHypergeometricKurtosis

Returns the Hypergeometric distribution's theoretical excess kurtosis (fourth moment), measuring the peakedness of the distribution and its extreme tail events. An excess kurtosis of 0 implies a normal tail.
233. B2DistributionHypergeometricM ean

Returns the Hypergeometric distribution's theoretical mean or expected value (first moment), measuring the central tendency of the distribution.
234. B2DistributionHypergeometricSkew

Returns the Hypergeometric distribution's theoretical skew (third moment), measuring the direction of the distribution's tail. Positive (negative) skew means mean exceeds (is less than) median and the tail points to the right (left).
235. B2DistributionHypergeometricStdev

Returns the Hypergeometric distribution's theoretical standard deviation (second moment), measuring the width and average dispersion of all points around the mean.
236. B2DistributionLogisticKurtosis

Returns the Logistic distribution's theoretical excess kurtosis (fourth moment), measuring the peakedness of the distribution and its extreme tail events. An excess kurtosis of 0 implies a normal tail.
237. B2DistributionLogisticM ean

Returns the Logistic distribution's theoretical mean or expected value (first moment), measuring the central tendency of the distribution.
238. B2DistributionLogisticSkew

Returns the Logistic distribution's theoretical skew (third moment), measuring the direction of the distribution's tail. Positive (negative) skew means mean exceeds (is less than) median and the tail points to the right (left).
239. B2DistributionLogisticStdev

Returns the Logistic distribution's theoretical standard deviation (second moment), measuring the width and average dispersion of all points around the mean.
240. B2DistributionLognormalKurtosis

Returns the Lognormal distribution's theoretical excess kurtosis (fourth moment), measuring the peakedness of the distribution and its extreme tail events. An excess kurtosis of 0 implies a normal tail.
241. B2DistributionLognormalM ean

Returns the Lognormal distribution's theoretical mean or expected value (first moment), measuring the central tendency of the distribution.
242. B2DistributionLognormalSkew

Returns the Lognormal distribution's theoretical skew (third moment), measuring the direction of the distribution's tail. Positive (negative) skew means mean exceeds (is less than) median and the tail points to the right (left).
243. B2DistributionLognormalStdev

Returns the Lognormal distribution's theoretical standard deviation (second moment), measuring the width and average dispersion of all points around the mean.
244. B2DistributionNegativeBinomialKurtosis

Returns the Negative Binomial distribution's theoretical excess kurtosis (fourth moment), measuring the peakedness of the distribution and its extreme tail events. An excess kurtosis of 0 implies a normal tail.
245. B2DistributionNegativeBinomialM ean

Returns the Negative Binomial distribution's theoretical mean or expected value (first moment), measuring the central tendency of the distribution.
246. B2DistributionNegativeBinomialSkew

Returns the Negative Binomial distribution's theoretical skew (third moment), measuring the direction of the distribution's tail. Positive (negative) skew means mean exceeds (is less than) median and the tail points to the right (left).
247. B2DistributionNegativeBinomialStdev

Returns the Negative Binomial distribution's theoretical standard deviation (second moment), measuring the width and average dispersion of all points around the mean.
248. B2DistributionNormalKurtosis

Returns the Normal distribution's theoretical excess kurtosis (fourth moment), measuring the peakedness of the distribution and its extreme tail events. An excess kurtosis of 0 implies a normal tail.
249. B2DistributionNormalM ean

Returns the Normal distribution's theoretical mean or expected value (first moment), measuring the central tendency of the distribution.
250. B2DistributionNormalSkew

Returns the Normal distribution's theoretical skew (third moment), measuring the direction of the distribution's tail. Positive (negative) skew means mean exceeds (is less than) median and the tail points to the right (left).
251. B2DistributionNormalStdev

Returns the Normal distribution's theoretical standard deviation (second moment), measuring the width and average dispersion of all points around the mean.
252. B2DistributionParetoKurtosis

Returns the Pareto distribution's theoretical excess kurtosis (fourth moment), measuring the peakedness of the distribution and its extreme tail events. An excess kurtosis of 0 implies a normal tail.
253. B2DistributionParetoM ean

Returns the Pareto distribution's theoretical mean or expected value (first moment), measuring the central tendency of the distribution.
254. B2DistributionParetoSkew

Returns the Pareto distribution's theoretical skew (third moment), measuring the direction of the distribution's tail. Positive (negative) skew means mean exceeds (is less than) median and the tail points to the right (left).
255. B2DistributionParetoStdev

Returns the Pareto distribution's theoretical standard deviation (second moment), measuring the width and average dispersion of all points around the mean.
256. B2DistributionPoissonKurtosis

Returns the Poisson distribution's theoretical excess kurtosis
(fourth moment), measuring the peakedness of the distribution and its extreme tail events. An excess kurtosis of 0 implies a normal tail.
257. B2DistributionPoissonM ean

Returns the Poisson distribution's theoretical mean or expected value (first moment), measuring the central tendency of the distribution.
258. B2DistributionPoissonSkew

Returns the Poisson distribution's theoretical skew (third moment), measuring the direction of the distribution's tail. Positive (negative) skew means mean exceeds (is less than) median and the tail points to the right (left).
259. B2DistributionPoissonStdev

Returns the Poisson distribution's theoretical standard deviation (second moment), measuring the width and average dispersion of all points around the mean.
260. B2DistributionRayleighKurtosis

Returns the Rayleigh distribution's theoretical excess kurtosis (fourth moment), measuring the peakedness of the distribution and its extreme tail events. An excess kurtosis of 0 implies a normal tail.
261. B2DistributionRayleighM ean

Returns the Rayleigh distribution's theoretical mean or expected value (first moment), measuring the central tendency of the distribution.
262. B2DistributionRayleighSkew

Returns the Rayleigh distribution's theoretical skew (third moment), measuring the direction of the distribution's tail. Positive (negative) skew means mean exceeds (is less than) median and the tail points to the right (left).
263. B2DistributionRayleighStdev

Returns the Rayleigh distribution's theoretical standard deviation (second moment), measuring the width and average dispersion of all points around the mean.
264. B2DistributionTKurtosis

Returns the Student's T distribution's theoretical excess kurtosis (fourth moment), measuring the peakedness of the distribution and its extreme tail events. An excess kurtosis of 0 implies a normal tail.
265. B2DistributionTM ean

Returns the Student's T distribution's theoretical mean or expected value (first moment), measuring the central tendency of the distribution.
266. B2DistributionTSkew

Returns the Student's T distribution's theoretical skew (third moment), measuring the direction of the distribution's tail. Positive (negative) skew means mean exceeds (is less than) median and the tail points to the right (left).
267. B2DistributionTStdev

Returns the Student's T distribution's theoretical standard deviation (second moment), measuring the width and average dispersion of all points around the mean.
268. B2DistributionTriangularKurtosis

Returns the Triangular distribution's theoretical excess kurtosis (fourth moment), measuring the peakedness of the distribution and its extreme tail events. An excess kurtosis of 0 implies a normal tail.
269. B2DistributionTriangularM ean

Returns the Triangular distribution's theoretical mean or expected value (first moment), measuring the central tendency of the distribution.
270. B2DistributionTriangularSkew

Returns the Triangular distribution's theoretical skew (third moment), measuring the direction of the distribution's tail. Positive (negative) skew means mean exceeds (is less than) median and the tail points to the right (left).
271. B2DistributionTriangularStdev Returns the Triangular distribution's theoretical standard
deviation (second moment), measuring the width and average dispersion of all points around the mean.
272. B2DistributionUniformKurtosis

Returns the Uniform distribution's theoretical excess kurtosis (fourth moment), measuring the peakedness of the distribution and its extreme tail events. An excess kurtosis of 0 implies a normal tail.
273. B2DistributionUniformM ean

Returns the Uniform distribution's theoretical mean or expected value (first moment), measuring the central tendency of the distribution.
274. B2DistributionUniformSkew

Returns the Uniform distribution's theoretical skew (third moment), measuring the direction of the distribution's tail. Positive (negative) skew means mean exceeds (is less than) median and the tail points to the right (left).
275. B2DistributionUniformStdev

Returns the Uniform distribution's theoretical standard deviation (second moment), measuring the width and average dispersion of all points around the mean.
276. B2DistributionW eibullKurtosis

Returns the Weibull distribution's theoretical excess kurtosis
(fourth moment), measuring the peakedness of the distribution and its extreme tail events. An excess kurtosis of 0 implies a normal tail.
277. B2DistributionW eibullM ean

Returns the Weibull distribution's theoretical mean or expected value (first moment), measuring the central tendency of the distribution.
278. B2DistributionW eibullSkew

Returns the Weibull distribution's theoretical skew (third moment), measuring the direction of the distribution's tail. Positive (negative) skew means mean exceeds (is less than) median and the tail points to the right (left).
279. B2DistributionW eibullStdev

Returns the Weibull distribution's theoretical standard deviation (second moment), measuring the width and average dispersion of all points around the mean.
280. B2DistributionCDFBernoulli

Computes the Bernoulli distribution's theoretical Cumulative Distribution Function (CDF), that is, the cumulative probability of the distribution less than or equal to X.
281. B2DistributionCDFBeta

Computes the Beta distribution's theoretical Cumulative Distribution Function (CDF), that is, the cumulative probability of the distribution at all points less than or equal to X.
282. B2DistributionCDFBinomial

Computes the Binomial distribution's theoretical Cumulative Distribution Function (CDF), that is, the cumulative probability of the distribution at all points less than or equal to X.
283. B2DistributionCDFChiSquare

Computes the Chi-Square distribution's theoretical Cumulative Distribution Function (CDF), that is, the cumulative probability of the distribution at all points less than or equal to X.
284. B2DistributionCDFDiscreteUniform

Computes the Discrete Uniform distribution's theoretical Cumulative Distribution Function (CDF), that is, the cumulative probability of the distribution at all points less than or equal to X.
285. B2DistributionCDFExponential

Computes the Exponential distribution's theoretical Cumulative Distribution Function (CDF), that is, the cumulative probability of the distribution at all points less than or equal to X.
286. B2DistributionCDFFDist

Computes the F distribution's theoretical Cumulative Distribution Function (CDF), that is, the cumulative probability of the distribution at all points less than or equal to X.
287. B2DistributionCDFGamma

Computes the Gamma distribution's theoretical Cumulative Distribution Function (CDF), that is, the cumulative probability of the distribution at all points less than or equal to X .
288. B2DistributionCDFGeometric

Computes the Geometric distribution's theoretical Cumulative Distribution Function (CDF), that is, the cumulative probability of the distribution at all points less than or equal to X.
289. B2DistributionCDFGumbelM ax

Computes the Gumbel Max distribution's theoretical Cumulative Distribution Function (CDF), that is, the cumulative probability of the distribution at all points less than or equal to X.
290. B2DistributionCDFGumbelM in

Computes the Gumbel Min distribution's theoretical Cumulative Distribution Function (CDF), that is, the cumulative probability of the distribution at all points less than or equal to X.
291. B2DistributionCDFLogistic

Computes the Logistic distribution's theoretical Cumulative Distribution Function (CDF), that is, the cumulative probability of the distribution at all points less than or equal to X .
292. B2DistributionCDFLognormal

Computes the Lognormal distribution's theoretical Cumulative Distribution Function (CDF), that is, the cumulative probability of the distribution at all points less than or equal to X .
293. B2DistributionCDFNormal

Computes the Normal distribution's theoretical Cumulative Distribution Function (CDF), that is, the cumulative probability of the distribution at all points less than or equal to X .
294. B2DistributionCDFPareto

Computes the Pareto distribution's theoretical Cumulative Distribution Function (CDF), that is, the cumulative probability of the distribution at all points less than or equal to X.
295. B2DistributionCDFPoisson

Computes the Poisson distribution's theoretical Cumulative Distribution Function (CDF), that is, the cumulative probability of the distribution at all points less than or equal to X.
296. B2DistributionCDFRayleigh

Computes the Rayleigh distribution's theoretical Cumulative Distribution Function (CDF), that is, the cumulative probability of the distribution at all points less than or equal to X .
297. B2DistributionCDFStandardNorma

Computes the Standard Normal distribution's theoretical Cumulative Distribution Function (CDF), that is, the cumulative probability of the distribution at all points less than or equal to X.
298. B2DistributionCDFTDist

Computes the Student's T distribution's theoretical Cumulative Distribution Function (CDF), that is, the cumulative probability of the distribution at all points less than or equal to X .
299. B2DistributionCDFTriangular

Computes the Triangular distribution's theoretical Cumulative Distribution Function (CDF), that is, the cumulative probability of the distribution at all points less
than or equal to X.
300. B2DistributionCDFUniform

Computes the Uniform distribution's theoretical Cumulative Distribution Function (CDF), that is, the cumulative probability of the distribution at all points less than or equal to X .
301. B2DistributionCDFWeibull

Computes the Weibull distribution's theoretical Cumulative Distribution Function (CDF), that is, the cumulative probability of the distribution at all points less than or equal to X
302. B2DistributionICDFBernoulli

Computes the Bernoulli distribution's theoretical Inverse Cumulative Distribution Function (ICDF), that is, given the cumulative probability between 0 and 1 , and the distribution's parameters, the function returns the relevant X value.
303. B2DistributionICDFBeta

Computes the Beta distribution's theoretical Inverse Cumulative Distribution Function (ICDF), that is, given the cumulative probability between 0 and 1 , and the distribution's parameters, the function returns the relevant X value.
304. B2DistributionICDFBinomial

Computes the Binomial distribution's theoretical Inverse Cumulative Distribution Function (ICDF), that is, given the cumulative probability between 0 and 1 , and the distribution's parameters, the function returns the relevant X value.
305. B2DistributionICDFChiSquare

Computes the Chi-Square distribution's theoretical Inverse Cumulative Distribution Function (ICDF), that is, given the cumulative probability between 0 and 1 , and the distribution's parameters, the function returns the relevant X value.
306. B2DistributionICDFDiscreteUniform

Computes the Discrete Uniform distribution's theoretical Inverse Cumulative Distribution Function (ICDF), that is, given the cumulative probability between 0 and 1 , and the distribution's parameters, the function returns the relevant X value.
307. B2DistributionICDFExponential

Computes the Exponential distribution's theoretical Inverse Cumulative Distribution Function (ICDF), that is, given the cumulative probability between 0 and 1 , and the distribution's parameters, the function returns the relevant X value.
308. B2DistributionICDFFDist

Computes the F distribution's theoretical Inverse Cumulative Distribution Function (ICDF), that is, given the cumulative probability between 0 and 1 , and the distribution's parameters, the function returns the relevant X value.
309. B2DistributionICDFGamma

Computes the Gamma distribution's theoretical Inverse Cumulative Distribution Function (ICDF), that is, given the cumulative probability between 0 and 1 , and the distribution's parameters, the function returns the relevant X value.
310. B2DistributionICDFGeometric

Computes the Geometric distribution's theoretical Inverse Cumulative Distribution Function (ICDF), that is, given the cumulative probability between 0 and 1 , and the distribution's parameters, the function returns the relevant X value.
311. B2DistributionICDFGumbelM ax

Computes the Gumbel Max distribution's theoretical Inverse Cumulative Distribution Function (ICDF), that is, given the cumulative probability between 0 and 1 , and the
distribution's parameters, the function returns the relevant X value.
312. B2DistributionICDFGumbelM in

Computes the Gumbel M in distribution's theoretical Inverse Cumulative Distribution Function (ICDF), that is, given the cumulative probability between 0 and 1 , and the distribution's parameters, the function returns the relevant X value.
313. B2DistributionICDFLogistic

Computes the Logistic distribution's theoretical Inverse Cumulative Distribution Function (ICDF), that is, given the cumulative probability between 0 and 1 , and the distribution's parameters, the function returns the relevant X value.
314. B2DistributionICDFLognormal

Computes the Lognormal distribution's theoretical Inverse Cumulative Distribution Function (ICDF), that is, given the cumulative probability between 0 and 1 , and the distribution's parameters, the function returns the relevant X value.
315. B2DistributionICDFNormal

Computes the Normal distribution's theoretical Inverse Cumulative Distribution Function (ICDF), that is, given the cumulative probability between 0 and 1 , and the distribution's parameters, the function returns the relevant X value.
316. B2DistributionICDFPareto

Computes the Pareto distribution's theoretical Inverse Cumulative Distribution Function (ICDF), that is, given the cumulative probability between 0 and 1 , and the distribution's parameters, the function returns the relevant X value.
317. B2DistributionICDFPoisson

Computes the Poisson distribution's theoretical Inverse Cumulative Distribution Function (ICDF), that is, given the cumulative probability between 0 and 1 , and the distribution's parameters, the function returns the relevant X value.
318. B2DistributionICDFRayleigh

Computes the Rayleigh distribution's theoretical Inverse Cumulative Distribution Function (ICDF), that is, given the cumulative probability between 0 and 1 , and the distribution's parameters, the function returns the relevant X value.
319. B2DistributionICDFStandardNormal

Computes the Standard Normal distribution's theoretical Inverse Cumulative Distribution Function (ICDF), that is, given the cumulative probability between 0 and 1 , and the distribution's parameters, the function returns the relevant X value.
320. B2DistributionICDFTDist

Computes the Student's T distribution's theoretical Inverse Cumulative Distribution Function (ICDF), that is, given the cumulative probability between 0 and 1 , and the distribution's parameters, the function returns the relevant X value.
321. B2DistributionICDFTriangular

Computes the Triangular distribution's theoretical Inverse Cumulative Distribution Function (ICDF), that is, given the cumulative probability between 0 and 1 , and the distribution's parameters, the function returns the relevant X value.
322. B2DistributionICDFUniform

Computes the Uniform distribution's theoretical Inverse Cumulative Distribution Function (ICDF), that is, given the cumulative probability between 0 and 1 , and the distribution's parameters, the function returns the relevant X value.

B2DistributionICDFWeibull
Computes the Weibull distribution's theoretical Inverse Cumulative Distribution Function (ICDF), that is, given the cumulative probability between 0 and 1 , and the distribution's parameters, the function returns the relevant X value.
324. B2DistributionPDFBernoulli

Computes the Bernoulli distribution's theoretical Inverse Cumulative Distribution Function (ICDF), that is, given the cumulative probability between 0 and 1 , and the distribution's parameters, the function returns the relevant X value.
325. B2DistributionPDFBeta

Computes the Beta distribution's theoretical Probability Density Function (PDF). The PDF of a discrete distribution returns the exact probability mass function or probability of occurrence but the PDF of continuous distributions are only theoretical values and not exact probabilities.
326. B2DistributionPDFBinomial

Computes the Binomial distribution's theoretical Probability Density Function (PDF). The PDF of a discrete distribution returns the exact probability mass function or probability of occurrence but the PDF of continuous distributions are only theoretical values and not exact probabilities.
327. B2DistributionPDFChiSquare

Computes the Chi-Square distribution's theoretical Probability Density Function (PDF). The PDF of a discrete distribution returns the exact probability mass function or probability of occurrence but the PDF of continuous distributions are only theoretical values and not exact probabilities.
328. B2DistributionPDFDiscreteUniform

Computes the Discrete Uniform distribution's theoretical Probability Density Function (PDF). The PDF of a discrete distribution returns the exact probability mass function or probability of occurrence but the PDF of continuous distributions are only theoretical values and not exact probabilities.
329. B2DistributionPDFExponential

Computes the Exponential distribution's theoretical Probability Density Function (PDF). The PDF of a discrete distribution returns the exact probability mass function or probability of occurrence but the PDF of continuous distributions are only theoretical values and not exact probabilities.
330. B2DistributionPDFFDist

Computes the F distribution's theoretical Probability Density Function (PDF). The PDF of a discrete distribution returns the exact probability mass function or probability of occurrence but the PDF of continuous distributions are only theoretical values and not exact probabilities.
331. B2DistributionPDFGamma

Computes the Gamma distribution's theoretical Probability Density Function (PDF). The PDF of a discrete distribution returns the exact probability mass function or probability of occurrence but the PDF of continuous distributions are only theoretical values and not exact probabilities.
332. B2DistributionPDFGeometric

Computes the Geometric distribution's theoretical Probability Density Function (PDF). The PDF of a discrete distribution returns the exact probability mass function or probability of occurrence but the PDF of continuous distributions are only theoretical values and not exact probabilities.
333. B2DistributionPDFGumbelM ax

Computes the Gumbel Max distribution's theoretical Probability Density Function (PDF). The PDF of a discrete distribution returns the exact probability mass function or
probability of occurrence but the PDF of continuous distributions are only theoretical values and not exact probabilities.
334. B2DistributionPDFGumbelM in

Computes the Gumbel Min distribution's theoretical Probability Density Function (PDF). The PDF of a discrete distribution returns the exact probability mass function or probability of occurrence but the PDF of continuous distributions are only theoretical values and not exact probabilities.
335. B2DistributionPDFLogistic

Computes the Logistic distribution's theoretical Probability Density Function (PDF). The PDF of a discrete distribution returns the exact probability mass function or probability of occurrence but the PDF of continuous distributions are only theoretical values and not exact probabilities.
336. B2DistributionPDFLognormal

Computes the Lognormal distribution's theoretical Probability Density Function (PDF). The PDF of a discrete distribution returns the exact probability mass function or probability of occurrence but the PDF of continuous distributions are only theoretical and not exact probabilities.
337. B2DistributionPDFNormal

Computes the Normal distribution's theoretical Probability Density Function (PDF). The PDF of a discrete distribution returns the exact probability mass function or probability of occurrence but the PDF of continuous distributions are only theoretical values and not exact probabilities.
338. B2DistributionPDFPareto

Computes the Pareto distribution's theoretical Probability Density Function (PDF). The PDF of a discrete distribution returns the exact probability mass function or probability of occurrence but the PDF of continuous distributions are only theoretical values and not exact probabilities.
339. B2DistributionPDFPoisson

Computes the Poisson distribution's theoretical Probability Density Function (PDF). The PDF of a discrete distribution returns the exact probability mass function or probability of occurrence but the PDF of continuous distributions are only theoretical values and not exact probabilities.
340. B2DistributionPDFRayleigh

Computes the Rayleigh distribution's theoretical Probability Density Function (PDF). The PDF of a discrete distribution returns the exact probability mass function or probability of occurrence but the PDF of continuous distributions are only theoretical values and not exact probabilities.
341. B2DistributionPDFStandardNormal

Computes the Standard Normal distribution's theoretical Probability Density Function (PDF). The PDF of a discrete distribution returns the exact probability mass function or probability of occurrence but the PDF of continuous distributions are only theoretical values and not exact probabilities.
342. B2DistributionPDFTDist

Computes the Student's T distribution's theoretical Probability Density Function (PDF). The PDF of a discrete distribution returns the exact probability mass function or probability of occurrence but the PDF of continuous distributions are only theoretical values and not exact probabilities.
343. B2DistributionPDFTriangular

Computes the Triangular distribution's theoretical Probability Density Function (PDF). The PDF of a discrete distribution returns the exact probability mass function or probability of occurrence but the PDF of continuous distributions are only theoretical values and not exact probabilities.
344. B2DistributionPDFUniform

Computes the Uniform distribution's theoretical Probability

Density Function (PDF). The PDF of a discrete distribution returns the exact probability mass function or probability of occurrence but the PDF of continuous distributions are only theoretical values and not exact probabilities.
345. B2DistributionPDFWeibull

Computes the Weibull distribution's theoretical Probability Density Function (PDF). The PDF of a discrete distribution returns the exact probability mass function or probability of occurrence but the PDF of continuous distributions are only theoretical values and not exact probabilities.
346. B2EquityLinkedFXCallOptionDomesticValue

Call options whose underlying asset is in a foreign equity
market, and the fluctuations of the foreign exchange risk is
hedged by having a strike price on the foreign exchange rate.
Resulting valuation is in the domestic currency.
347. B2EquityLinkedFXPutOptionDomesticValue

Put options whose underlying asset is in a foreign equity market, and the fluctuations of the foreign exchange risk is hedged by having a strike price on the foreign exchange rate. Resulting valuation is in the domestic currency.
348. B2EWM AVolatilityForecastGivenPastPrices

Computes the annualized volatility forecast of the next period given a series of historical prices and the corresponding weights placed on the previous volatility estimate.
349. B2EWM AVolatilityForecastGivenPastVolatility

Computes the annualized volatility forecast of the next period given the previous period's volatility and changes in stock returns in the previous period.
350. B2ExtremeSpreadCallOption

M aturities are divided into two segments, and the call option pays the difference between the max assets from segment two and max of segment one.
351. B2ExtremeSpreadPutOption

M aturities are divided into two segments, and the put option pays the difference between the min of segment two's asset value and the min of segment one's asset value.
352. B2ExtremeSpreadReverseCallOption

Maturities are divided into two segments, and a reverse call pays the min from segment one less the min of segment two.
353. B2ExtremeSpreadReversePutOption

Maturities are divided into two segments, and a reverse put pays the max of segment one less the max of the segment two.
354. B2FiniteDifferenceAmericanCall

Computes the American call option using finite differencing methods, as an alternative to simulation, closed-form approximation models, and lattices.
355. B2FiniteDifferenceAmericanPut

Computes the American put option using finite differencing methods, as an alternative to simulation, closed-form approximation models, and lattices.
356. B2FiniteDifferenceEuropeanCall

Computes the European call option using finite differencing methods, as an alternative to simulation, closed-form approximation models, and lattices.
357. B2FiniteDifferenceEuropeanPut

Computes the European put option using finite differencing methods, as an alternative to simulation, closed-form approximation models, and lattices.
358. B2FixedStrikeLookbackCall

Strike price is fixed, while at expiration, the payoff is the difference between the maximum asset price less the strike price, during the lifetime of the option.
359. B2FixedStrikeLookbackPut

Strike price is fixed, while at expiration, the payoff is the maximum difference between the lowest observed asset price less the strike price, during the lifetime of the option.
360. B2FixedStrikePartialLookbackCall

Strike price is fixed, while at expiration, the payoff is the difference between the maximum asset price less the strike, during the starting period of the lookback to the maturity of the option.
361. B2FixedStrikePartialLookbackPut

Strike price is fixed, while at expiration, the payoff is the maximum difference between the lowest observed asset price less the strike, during the starting period of the lookback to the maturity of the option.
362. B2FloatingStrikeLookbackCallonM in

Strike price is floating, while at expiration, the payoff on the call option is being able to purchase the underlying asset at the minimum observed price during the life of the option.
363. B2FloatingStrikeLookbackPutonM ax

Strike price is floating, while at expiration, the payoff on the put option is being able to sell the underlying asset at the maximum observed asset price during the life of the option.
364. B2FloatingStrikePartialLookbackCallonM in

Strike price is floating, while at expiration, the payoff on the call option is being able to purchase the underlying at the minimum observed asset price from inception to the end of the lookback time.
365. B2FloatingStrikePartialLookbackPutonM ax

Strike price is floating, while at expiration, the payoff on the put option is being able to sell the underlying at the maximum observed asset price from inception to the end of the lookback time.
366. B2ForecastBrownianM otionSimulatedSeries

Computes the entire time-series of Brownian motion stochastic process forecast values.
367. B2ForecastDistributionValue

Computes the forecast price of an asset in the future, assuming the asset follows a Brownian motion random walk and returns the forecast price given the cumulative probability level.
368. B2ForecastDistributionValuePercentile

Computes the cumulative probability or percentile of an asset in the future, assuming the asset follows a Brownian motion random walk and returns the forecast cumulative percentile given the future price.
369. B2ForecastDistributionReturns

Computes the forecast return of an asset in the future, assuming the asset follows a Brownian motion random walk and returns the forecast percent return given the cumulative probability level.
370. B2ForecastDistributionReturnsPercentile

Computes the cumulative probability or percentile of an asset's returns in the future, assuming the asset follows a Brownian motion random walk and returns the forecast cumulative percentile given the return.
371. B2ForecastJumpDiffusionSimulatedSeries

Computes the entire time-series of a jump-diffusion stochastic process forecast values.
372. B2ForecastM eanReversionSimulatedSeries Computes the entire time-series of a mean-reverting stochastic process forecast values.
373. B2ForecastIncrementalFinancialNeeds

Computes the incremental funds required to cover the projected organic sales growth of the company based on the projected year's financials.
374. B2ForecastIncrementalPercentSalesGrowthFinancedExternal Computes the incremental funds as a percent of sales growth that is required from external funding to cover the projected organic sales growth of the company.
375. B2ForeignEquityDomesticCurrencyCall

Computes the value of a foreign-based equity call option struck in a domestic currency and accounting for the
exchange rate volatility.
376. B2ForeignEquityDomesticCurrencyPut

Computes the value of a foreign-based equity put option struck in a domestic currency and accounting for the exchange rate volatility.
377. B2ForeignEquityFixedFXRateDomesticValueQuantoCall

Quanto call options are denominated in another currency
than the underlying asset, with expanding or contracting
protection coverage of the foreign exchange rates.
378. B2ForeignEquityFixedFXRateDomesticValueQuantoPut

Quanto put options are denominated in another currency than the underlying asset, with an expanding or contracting protection coverage of the foreign exchange rates.
379. B2ForwardRate

Computes the Forward Interest Rate given two Spot Rates
380. B2ForwardStartCallOption

Starts proportionally in or out of the money in the future. Alpha<l: call starts (1-A)\% in the money, put starts (1-A)\% out of the money. Alpha>1: call (A-1) \% out of the money, puts (A-1)\% in the money.
381. B2ForwardStartPutOption

Starts proportionally in or out of the money in the future. Alpha<l: call starts (1-A)\% in the money, put starts (1-A)\% out of the money. Alpha>1: call (A-1) \% out of the money, puts (A-1)\% in the money.
382. B2FuturesForwardsCallOption

Similar to a regular option but the underlying asset is a futures of forward contract. A call option is the option to buy a futures contract, with the specified futures strike price at which the futures is traded if the option is exercised.
383. B2FuturesForwardsPutOption

Similar to a regular option but the underlying asset is a futures of forward contract. A put option is the option to sell a futures contract, with the specified futures strike price at which the futures is traded if the option is exercised.
384. B2FuturesSpreadCall

The payoff of a spread option is the difference between the two futures' values at expiration. The spread is Futures 1 Futures 2, and the call payoff is Spread - Strike value.
385. B2FuturesSpreadPut

The payoff of a spread option is the difference between the two futures' values at expiration. The spread is Futures 1 -
Futures 2, and the put payoff is Strike - Spread.
386. B2GARCH

Computes the forward-looking volatility forecast using the generalized autoregressive conditional heteroskedasticity (p, q) model where future volatilities are forecast based on historical price levels and information.
387. B2GapCallOption

The call option is knocked in if the asset exceeds the reference Strike 1, and the option payoff is the asset price less Strike 2 for the underlying.
388. B2GapPutOption

The put option is knocked in only if the underlying asset is less than the reference Strike 1, providing a payoff of Strike Price 2 less the underlying asset value.
389. B2GeneralizedBlackScholesCall

Returns the Black-Scholes M odel with a continuous dividend yield call option.
390. B2GeneralizedBlackScholesCallCashDividends

M odification of the Generalized Black-Scholes model to solve European call options assuming a series of dividend cash flows that may be even or uneven. A series of dividend payments and time are required.
391. B2GeneralizedBlackScholesPut

Returns the Black-Scholes M odel with a continuous dividend yield put option.
392. B2GeneralizedBlackScholesPutCashDividends

M odification of the Generalized Black-Scholes model to solve European put options assuming a series of dividend cash flows that may be even or uneven. A series of dividend payments and time are required.
393. B2GraduatedBarrierDownandInCall

Barriers are graduated ranges between lower and upper values. The option is knocked in the money proportionally depending on how low the asset value is in the range.
394. B2GraduatedBarrierDownandOutCall

Barriers are graduated ranges between lower and upper values. The option is knocked out of the money proportionally depending on how low the asset value is in the range.
395. B2GraduatedBarrierUpandInPut

Barriers are graduated ranges between lower and upper values. The option is knocked in the money proportionally depending on how high the asset value is in the range.
396. B2GraduatedBarrierUpandOutPut

Barriers are graduated ranges between lower and upper values. The option is knocked out of the money proportionally depending on how high the asset value is in the range.
397. B2ImpliedVolatilityBestCase

Computes the implied volatility given an expected value of an asset, and an alternative best case scenario value and its corresponding percentile (must be above 50%).
398. B2ImpliedVolatilityCall

Computes the implied volatility in a European call option given all the inputs parameters and option value.
399. B2ImpliedVolatilityPut

Computes the implied volatility in a European put option given all the inputs parameters and option value.
400. B2ImpliedVolatilityW orstCase

Computes the implied volatility given an expected value of an asset, and an alternative worst case scenario value and its corresponding percentile (must be below 50\%).
401. B2InterestAnnualtoPeriodic

Computes the periodic compounding rate based on the annualized compounding interest rate per year.
402. B2InterestCaplet

Computes the interest rate caplet (sum all the caplets into the total value of the interest rate cap) and acts like an interest rate call option.
403. B2InterestContinuousToDiscrete

Returns the corresponding discrete compounding interest rate given the continuous compounding rate.
404. B2InterestContinuousToPeriodic

Computes the periodic compounding interest rate based on a continuous compounding rate.
405. B2InterestDiscreteToContinuous

Returns the corresponding continuous compounding interest rate given the discrete compounding rate.
406. B2InterestFloorlet

Computes the interest rate floorlet (sum all the floorlets into the total value of the interest rate floor) and acts like an interest rate put option.
407. B2InterestPeriodictoAnnual

Computes the annualized compounding interest rate per year based on a periodic compounding rate.
408. B2InterestPeriodictoContinuous

Computes the continuous compounding rate based on the periodic compounding interest rate.
409. B2InverseGammaCallOption

Computes the European Call option assuming an inverse Gamma distribution, rather than a normal distribution, and is important for deep out-of-the-money options.
410. B2InverseGammaPutOption

Computes the European Put option assuming an inverse

Gamma distribution, rather than a normal distribution, and is important for deep out-of-the-money options.
411. B2IRRContinuous

Returns the continuously discounted Internal Rate of Return for a cash flow series with its respective cash flow times in years.
412. B2IRRDiscrete

Returns the discretely discounted Internal Rate of Return for a cash flow series with its respective cash flow times in years.
413. B2LinearInterpolation

Interpolates and fills in the missing values of a time series.
414. B2M arketPriceRisk

Computes the market price of risk used in a variety of options analysis, using market return, risk-free return, volatility of the market and correlation between the market and the asset.
415. B2M athIncompleteGammaQ

Returns the result from an incomplete Gamma Q function.
416. B2M athIncompleteGammaP

Returns the result from an incomplete Gamma P function.
417. B2M athIncompleteBeta

Returns the result from an incomplete Beta function.
418. B2M athGammaLog

Returns the result from a log gamma function.
419. B2M atrixM ultiplyAxB

Multiplies two compatible matrices, such as $\mathrm{M} \times \mathrm{N}$ with NxM to create an $M \times M$ matrix. Copy and paste function and use Ctrl+Shift Enter to obtain the matrix.
420. B2M atrixM ultiplyAxTransposeB

Multiplies the first matrix with the transpose of the second matrix (multiplies $\mathrm{M} \times \mathrm{N}$ with $\mathrm{M} \times \mathrm{N}$ matrix by transposing the second matrix to NxM , generating an M xM matrix). Copy and paste function and use Ctrl+Shift Enter to obtain the matrix.
421. B2M atrixM ultiplyTransposeAxB

Multiplies the transpose of the first matrix with the second matrix (multiplies $\mathrm{M} \times \mathrm{N}$ with $\mathrm{M} \times N$ matrix by transposing the first matrix to NxM , generating an NxN matrix). Copy and paste function and use Ctrl+Shift Enter to obtain the matrix.
422. B2M atrixTranspose

Transposes a matrix, from MxN to NxM . Copy and paste function and use Ctrl+Shift Enter to obtain the matrix.
423. B2M ertonJumpDiffusionCall

Call value of an underlying whose asset returns are assumed to follow a Poisson Jump Diffusion process, i.e., prices jump several times a year, and cumulatively, these jumps explain a percentage of the total asset volatility.
424. B2M ertonJumpDiffusionPut

Put value of an underlying whose asset returns are assumed to follow a Poisson Jump Diffusion process, i.e., prices jump several times a year, and cumulatively, these jumps explain a percentage of the total asset volatility.
425. B2NormalTransform

Converts values into a normalized distribution.
426. B2NPVContinuous

Returns the Net Present Value of a cash flow series given the time and discount rate, using Continuous discounting.
427. B2NPVDiscrete

Returns the Net Present Value of a cash flow series given the time and discount rate, using discrete discounting.
428. B2OptionStrategyLongBearCreditSpread

Returns the matrix [stock price, buy put, sell put, profit] of a long bearish crebit spread (buying a higher strike put with a high price and selling a lower strike put with a low price).
429. B2OptionStrategyLongBullCreditSpread

Returns the matrix [stock price, buy put, sell put, profit] of a bullish credit spread (buying a low strike put at low price and selling a high strike put at high price).
430. B2OptionStrategyLongBearDebitSpread

Returns the matrix [stock price, buy call, sell call, profit] of a
long bearish debit spread (buying a high strike call with a low price and selling a lower strike call with a high price).
431. B2OptionStrategyLongBullDebitSpread

Returns the matrix [stock price, buy call, sell call, profit] of a bullish debit spread (buying a low strike call at high price and selling a further out-of-the-money high strike call at low price).
432. B2OptionStrategyLongCoveredCall

Returns the matrix [stock price, buy stock, sell call, profit] of a long covered call position (buying the stock and selling a call of the same asset).
433. B2OptionStrategyLongProtectivePut

Returns the matrix [stock price, buy stock, buy put, profit] of a long protective put position (buying the stock and buying a put of the same asset).
434. B2OptionStrategyLongStraddle

Returns the matrix [stock price, buy call, buy put, profit] of a long straddle position (buy an equal number of puts and calls with identical strike price and expiration) to profit from high volatility.
435. B2OptionStrategyLongStrangle

Returns the matrix [stock price, buy call, buy put, profit] of a long strangle (buy high strike call at low price and buy low strike put at low price (close expirations), profits from high volatility.
436. B2OptionStrategyW riteCoveredCall

Returns the matrix [stock price, sell stock, buy call, profit] of writing a covered call (selling the stock and buying a call of the same asset).
437. B2OptionStrategyW riteProtectivePut

Returns the matrix [stock price, sell stock, sell put, profit] of a long protective put position (buying the stock and buying a put of the same asset).
438. B2OptionStrategyW riteStraddle Returns the matrix [stock price, sell call, sell put, profit] of writing a straddle position (sell an equal number of puts and calls with identical strike price and expiration) to profit from low volatility.
439. B2OptionStrategyW riteStrangle

Returns the matrix [stock price, sell call, sell put, profit] of writing a strangle (sell high strike call at low price and sell low strike put at low price (close expirations), profits from low volatility.
440. B2Payback

Computes the payback in years given some initial investment and subsequent cash flows.
441. B2PerpetualCallOption

Computes the American perpetual call option. Note that it returns an error if dividend is 0% (this is because the American option reverts to European and a perpetual European has no value).
442. B2PerpetualPutOption

Computes the American perpetual put option. Note that it returns an error if dividend is 0% (this is because the American option reverts to European and a perpetual European has no value).
443. B2PortfolioReturns Computes the portfolio weighted average expected returns given individual asset returns and allocations.
444. B2PortfolioRisk

Computes the portfolio risk given individual asset allocations and variance-covariance matrix.
445. B2PortfolioVariance

Computes the portfolio variance given individual asset allocations and variance-covariance matrix. Take the square root of the result to obtain the portfolio risk.
446. B2ProbabilityDefaultAdjustedBondYield

Computes the required risk-adjusted yield (premium spread
plus risk-free) to charge given the cumulative probability of default.
447. B2ProbabilityDefaultAverageDefaults

Credit Risk Plus' average number of credit defaults per period using total portfolio credit exposures, average cum probability of default, and percentile Value at Risk for the portfolio.
448. B2ProbabilityDefaultCorrelation

Computes the correlations of default probabilities given the probabilities of default of each asset and the correlation between their equity prices. The result is typically much smaller than the equity correlation.
449. B2ProbabilityDefaultCumulativeBondYieldApproach

Computes the cumulative probability of default from Year 0 to M aturity using a comparable zero bond yield versus a zero risk-free yield and accounting for a recovery rate.
450. B2ProbabilityDefaultCumulativeSpreadApproach

Computes the cumulative probability of default from Year 0
to Maturity using a comparable risky debt's spread (premium)versus the risk-free rate and accounting for a recovery rate.
451. B2ProbabilityDefaultHazardRate

Computes the hazard rate for a specific year (in survival analysis) using a comparable zero bond yield versus a zero risk-free yield and accounting for a recovery rate.
452. B2ProbabilityDefaultM ertonDefaultDistance

Distance to Default (does not require market returns and correlations but requires the internal growth rates).
453. B2ProbabilityDefaultM ertonl

Probability of Default (without regard to Equity Value or Equity Volatility, but requires Asset, Debt, and market values).
454. B2ProbabilityDefaultM ertonll

Probability of Default (does not require market returns and correlations but requires the internal growth rates).
455. B2ProbabilityDefaultM ertonImputedAssetValue

Returns the imputed market value of asset given external equity value, equity volatility, and other option inputs. Used in the M erton probability of default model.
456. B2ProbabilityDefaultM ertonImputedAssetVolatility

Returns the imputed volatility of asset given external equity value, equity volatility, and other option inputs. Used in the M erton probability of default model.
457. B2ProbabilityDefaultM ertonM VDebt

Computes the market value of debt (for risky debt) in the M erton-based simultaneous options model.
458. B2ProbabilityDefaultM ertonRecoveryRate

Computes the rate of recovery in percent, for risky debt in
the M erton-based simultaneous options model.
459. B2ProbabilityDefaultPercentileDefaults

Credit Risk Plus method to compute the percentile given some estimated average number of defaults per period.
460. B2PropertyDepreciation

Value of the periodic depreciation allowed on a commercial real estate project given the percent of price going to improvement and the allowed recovery period.
461. B2PropertyEquityRequired

Value of the required equity down payment on a commercial real estate project given the valuation of the project.
462. B2PropertyLoanAmount

Value of the required mortgage amount on a commercial real estate project given the value of the project and the loan required (loan to value ratio or the percentage of the value a loan is required).
463. B2PropertyValuation

Value of a commercial real estate property assuming Gross Rent, Vacancy, Operating Expenses, and the Cap Rate at Purchase Date (Net Operating Income/ Sale Price).
464. B2PutCallParityCalltoPut

Computes the European put option value given the value of a corresponding European call option with identical input assumptions.
465. B2PutCallParityCalltoPutCurrencyOptions

Computes the European currency put option value given the value of a corresponding European currency call option on futures and forwards with identical input assumptions.
466. B2PutCallParityCalltoPutFutures

Computes the European put option on futures and forwards value given the value of a corresponding European call option on futures and forwards with identical input assumptions.
467. B2PutCallParityPuttoCall

Computes the European call option value given the value of a corresponding European put option with identical input assumptions.
468. B2PutCallParityPuttoCallCurrencyOptions

Computes the European currency call option value given the value of a corresponding European currency put option on futures and forwards with identical input assumptions.
469. B2PutCallParityPuttoCallFutures

Computes the European call option on futures and forwards value given the value of a corresponding European put option on futures and forwards with identical input assumptions.
470. B2PutDelta

Returns the option valuation sensitivity Delta (a put option value's sensitivity to changes in the asset value).
471. B2PutGamma

Returns the option valuation sensitivity Gamma (a put option value's sensitivity to changes in the delta value).
472. B2PutOptionOnTheM ax

The maximum values at expiration of both assets are used in option exercise, where the call option payoff at expiration is the strike price against the maximum price between Asset 1 and Asset 2.
473. B2PutOptionOnTheM in

The minimum values at expiration of both assets are used in option exercise, where the call option payoff at expiration is the strike price against the minimum price between Asset 1 and Asset 2.
474. B2PutRho

Returns the option valuation sensitivity Rho (a put option value's sensitivity to changes in the interest rate).
475. B2PutTheta

Returns the option valuation sensitivity Theta (a put option value's sensitivity to changes in the maturity).
476. B2PutVega

Returns the option valuation sensitivity Vega (a put option value's sensitivity to changes in the volatility).
477. B2QueuingM CAveCustomersinSystem

Average number of customers in the system using a multiple channel queuing model assuming a Poisson arrival rate with Exponential distribution of service times.
478. B2QueuingM CAveCustomersW aiting

Average number of customers in the waiting line using a multiple channel queuing model assuming a Poisson arrival rate with Exponential distribution of service times.
479. B2QueuingM CAveTimeinSystem

Average time a customer spends in the system using a multiple channel queuing model assuming a Poisson arrival rate with Exponential distribution of service times.
480. B2QueuingM CAveTimeWaiting

Average time a customer spends in the waiting line using a multiple channel queuing model assuming a Poisson arrival rate with Exponential distribution of service times.
481. B2QueuingM CProbHaveToWait

Probability an arriving customer has to wait using a multiple
channel queuing model assuming a Poisson arrival rate with Exponential distribution of service times.
482. B2QueuingM CProbNoCustomer

Probability that no customers are in the system using a multiple channel queuing model assuming a Poisson arrival rate with Exponential distribution of service times.
483. B2QueuingM GKAveCustomersinSystem

Average number of customers in the system using a multiple channel queuing model assuming a Poisson arrival rate with unknown distribution of service times.
484. B2QueuingM GKCostPerPeriod

Total cost per time period using a multiple channel queuing model assuming a Poisson arrival rate with unknown distribution of service times.
485. B2QueuingM GKProbBusy

Probability a channel will be busy using a multiple channel queuing model assuming a Poisson arrival rate with unknown distribution of service times.
486. B2QueuingSCAAveCustomersinSystem

Average number of customers in the system using an MG1 single channel arbitrary queuing model assuming a Poisson arrival rate with unknown distribution of service times.
487. B2QueuingSCAAveCustomersW aiting

Average number of customers in the waiting line using an MG1 single channel arbitrary queuing model assuming a Poisson arrival rate with unknown distribution of service times.
488. B2QueuingSCAAveTimeinSystem

Average time a customer spends in the system using an M G1 single channel arbitrary queuing model assuming a Poisson arrival rate with unknown distribution of service times.
489. B2QueuingSCAAveTimeWaiting

Average time a customer spends in the waiting line using an MG1 single channel arbitrary queuing model assuming a Poisson arrival rate with unknown distribution of service times.
490. B2QueuingSCAProbHaveToW ait

Probability an arriving customer has to wait using an MG1 single channel arbitrary queuing model assuming a Poisson arrival rate with unknown distribution of service times.
491. B2QueuingSCAProbNoCustomer

Probability that no customers are in the system using an MG1 single channel arbitrary queuing model assuming a Poisson arrival rate with unknown distribution of service times.
492. B2QueuingSCAveCustomersinSystem

Average number of customers in the system using a single channel queuing model.
493. B2QueuingSCAveCustomersW aiting

Returns the average number of customers in the waiting line using a single channel queuing model.
494. B2QueuingSCAveTimeinSystem

Average time a customer spends in the system using a single channel queuing model.
495. B2QueuingSCAveTimeWaiting

Average time a customer spends in the waiting line using a single channel queuing model.
496. B2QueuingSCProbHaveToW ait

Probability an arriving customer has to wait using a single channel queuing model.
497. B2QueuingSCProbNoCustomer

Returns the probability that no customers are in the system using a single channel queuing model.
498. B2RatiosBasicEarningPower

Computes the basic earning power (BEP) by accounting for earnings before interest and taxes (EBIT) and the amount of total assets employed.
499. B2RatiosBetaLevered

Computes the levered beta from an unlevered beta level after accounting for the tax rate, total debt and equity values.
500. B2RatiosBetaUnlevered

Computes the unlevered beta from a levered beta level after accounting for the tax rate, total debt and equity values.
501. B2RatiosBookValuePerShare

Computes the book value per share (BV) by accounting for the total common equity amount and number of shares outstanding.
502. B2RatiosCapitalCharge

Computes the capital charge value (typically used to compute the economic profit of a project).
503. B2RatiosCAPM

Computes the capital asset pricing model's required rate of return in percent, given some benchmark market return, beta risk coefficient, and risk-free rate.
504. B2RatiosCashFlowtoEquityLeveredFirm

Cash flow to equity for a levered firm (accounting for operating expenses, taxes, depreciation, amortization, capital expenditures, change in working capital, preferred dividends, principal repaid and new debt issues).
505. B2RatiosCashFlowtoEquityUnleveredFirm

Cash flow to equity for an unlevered firm (accounting for operating expenses, taxes, depreciation, amortization, capital expenditures, change in working capital and taxes).
506. B2RatiosCashFlowtoFirm

Cash flow to the firm (accounting for earnings before interest and taxes EBIT, tax rate, depreciation, capital expenditures and change in working capital).
507. B2RatiosCashFlowtoFirm2

Cash flow to the firm (accounting for net operating profit after taxes (NOPAT), depreciation, capital expenditures and change in working capital).
508. B2RatiosContinuingValue1

Computes the continuing value based on a constant growth rate of free cash flows to perpetuity using a Gordon Growth M odel.
509. B2RatiosContinuingValue2

Computes the continuing value based on a constant growth rate of free cash flows to perpetuity using net operating profit after taxes (NOPAT), return on invested capital (ROIC), growth rate and current free cash flow.
510. B2RatiosCostEquity

Computes the cost of equity (as used in a CAPM model) using the dividend rate, growth rate of dividends, and current equity price.
511. B2RatiosCurrentRatio

Computes the current ratio by accounting for the individual asset and liabilities.
512. B2RatiosDaysSalesOutstanding

Computes the days sales outstanding by looking at the accounts receivables value, total annual sales, and number of days per year.
513. B2RatiosDebtAssetRatio

Computes the debt to asset ratio by accounting for the total debt and total asset values.
514. B2RatiosDebtEquityRatio Computes the debt to equity ratio by accounting for the total debt and total common equity levels.
515. B2RatiosDebtRatiol Computes the debt ratio by accounting for the total debt and total asset values.
516. B2RatiosDebtRatio2

Computes the debt ratio by accounting for the total equity and total asset values.
517. B2RatiosDividendsPerShare Computes the dividends per share (DPS) by accounting for the dividend payment amount and number of shares
outstanding.
518. B2RatiosEarningsPerShare

Computes the earnings per share (EPS) by accounting for the net income amount and number of shares outstanding.
519. B2RatiosEconomicProfit1

Computes the economic profit using invested capital, return on invested capital (ROIC) and weighted average cost of capital (WACC).
520. B2RatiosEconomicProfit2

Computes the economic profit using net operating profit after tax (NOPAT), return on invested capital (ROIC) and weighted average cost of capital (WACC).
521. B2RatiosEconomicProfit3

Computes the economic profit using net operating profit after tax (NOPAT) and capital charge.
522. B2RatiosEconomicValueAdded

Computes the economic value added using earnings before interest and taxes (EBIT), total capital employed, tax rate, and weighted average cost of capital (WACC).
523. B2RatiosEquityM ultiplier

Computes the equity multiplier (the ratio of total assets to total equity).
524. B2RatiosFixedAssetTurnover

Computes the fixed asset turnover by accounting for the annual sales levels and net fixed assets.
525. B2RatiosInventoryTurnover

Computes the inventory turnover using sales and inventory levels.
526. B2RatiosM arketBookRatiol

Computes the market to book value per share by accounting for the share price and the book value (BV) per share.
527. B2RatiosM arketBookRatio2

Computes the market to book value per share by accounting for the share price, total common equity value, and the number of shares outstanding.
528. B2RatiosM arketValueAdded

Computes the market value added by accounting for the
stock price, total common equity, and number of shares outstanding.
529. B2RatiosNominalCashFlow

Computes the nominal cash flow amount assuming some inflation rate, real cash flow, and the number of years in the future.
530. B2RatiosNominalDiscountRate

Computes the nominal discount rate assuming some inflation rate and real discount rate.
531. B2RatiosPERatiol

Computes the price to earnings ratio (PE) using stock price and earnings per share (EPS).
532. B2RatiosPERatio2

Computes the price to earnings ratio (PE) using stock price, net income, and number of shares outstanding.
533. B2RatiosPERatio3

Computes the price to earnings ratio (PE) using growth rates, rate of return, and discount rate.
534. B2RatiosProfitM argin

Computes the profit margin by taking the ratio of net income to annual sales.
535. B2RatiosQuickRatio

Computes the quick ratio by accounting for the individual asset and liabilities.
536. B2RatiosRealCashFlow

Computes the real cash flow amount assuming some inflation rate, nominal cash flow (Nominal CF), and the number of years in the future.
537. B2RatiosRealDiscountRate

Computes the real discount rate assuming some inflation rate and nominal discount rate.

538.	B2RatiosReturnonAsset1
	Computes the return in asset using net income amount and total assets employed.
539.	B2RatiosReturnonAsset2
	Computes the return in asset using net profit margin percentage and total asset turnover ratio.
540.	B2RatiosReturnonEquity1
	Computes return on equity using net income and total common equity values.
541.	B2RatiosReturnonEquity2
	Computes return on equity using return on asset (ROA), total asset, and total equity values.
542.	B2RatiosReturnonEquity3
	Computes return on equity using net income, total sales, total asset, and total common equity values.
543.	B2RatiosReturnonEquity4
	Computes return on equity using net profit margin, total asset turnover, and equity multiplier values.
544.	B2RatiosROIC
	Computes the return on invested capital (typically used for computing economic profit) accounting for change in working capital, property, plant equipment (PPE).
545.	B2RatiosShareholderEquity
	Computes the common shareholder's equity after accounting for total assets, total liabilities and preferred stocks.
546.	B2SimulatedEuropeanCall
	Returns the Monte Carlo simulated European call option (only European options can be approximated well with simulation). This function is volatile.
547.	B2SimulatedEuropeanPut
	Returns the Monte Carlo simulated European put option (only European options can be approximated well with simulation). This function is volatile.
548.	B2RatiosTimesInterestEarned
	Computes the times interest earned ratio by accounting for earnings before interest and taxes (EBIT) and the amount of interest payment.
549.	B2RatiosTotalAssetTurnover
	Computes the total asset turnover by accounting for the annual sales levels and total assets.
550.	B2RatiosWACC1
	Computes the weighted average cost of capital (WACC) using market values of debt, preferred equity, and common equity, as well as their respective costs.
551	B2RatiosWACC2
	Computes the weighted average cost of capital (WACC) using market values of debt, market values of common equity, as well as their respective costs.
552	B2ROBinomialAmericanAbandonContract
	Returns the American option to abandon and contract using a binomial lattice model.
553	B2ROBinomialAmericanAbandonContractExpand
	Returns the American option to abandon, contract and expand using a binomial lattice model.
554	B2ROBinomialAmericanAbandonExpand
	Returns the American option to abandon and expand using a binomial lattice model.
555	B2ROBinomialAmericanAbandonment
	Returns the American option to abandon using a binomial lattice model.
556.	B2ROBinomialAmericanCall
	Returns the American call option with dividends using a binomial lattice model.
557.	B2ROBinomialAmericanChangingRiskFree
	Returns the American call option with dividends and assuming the risk-free rate changes over time, using a binomial lattice model.
558.	B2ROBinomialAmericanChangingVolatility

Returns the American call option with dividends and assuming the volatility changes over time, using a binomial lattice model. Use small number of steps or it will take a long time to compute!
559. B2ROBinomialAmericanContractExpand

Returns the American option to contract and expand using a binomial lattice model.
560. B2ROBinomialAmericanContraction

Returns the American option to contract using a binomial lattice model.
561. B2ROBinomialAmericanCustomCall

Returns the American option call option with changing inputs, vesting periods, and suboptimal exercise multiple using a binomial lattice model.
562. B2ROBinomialAmericanExpansion

Returns the American option to expand using a binomial lattice model.
563. B2ROBinomialAmericanPut

Returns the American put option with dividends using a binomial lattice model.
564. B2ROBinomialBermudanAbandonContract

Returns the Bermudan option to abandon and contract using a binomial lattice model, where there is a vesting/blackout period where the option cannot be executed.
565. B2ROBinomialBermudanAbandonContractExpand

Returns the Bermudan option to abandon, contract and expand, using a binomial lattice model, where there is a vesting/blackout period the option cannot be executed.
566. B2ROBinomialBermudanAbandonExpand

Returns the Bermudan option to abandon and expand using a binomial lattice model, where there is a vesting/blackout period where the option cannot be executed.
567. B2ROBinomialBermudanAbandonment

Returns the Bermudan option to abandon using a binomial lattice model, where there is a vesting/blackout period where the option cannot be executed.
568. B2ROBinomialBermudanCall

Returns the Bermudan call option with dividends, where there is a vesting/blackout period where the option cannot be executed.
569. B2ROBinomialBermudanContractExpand

Returns the Bermudan option to contract and expand, using a binomial lattice model, where there is a vesting/blackout period where the option cannot be executed.
570. B2ROBinomialBermudanContraction

Returns the Bermudan option to contract using a binomial lattice model, where there is a vesting/blackout period where the option cannot be executed.
571. B2ROBinomialBermudanExpansion

Returns the Bermudan option to expand using a binomial lattice model, where there is a vesting/blackout period where the option cannot be executed.
572. B2ROBinomialBermudanPut

Returns the Bermudan put option with dividends, where there is a vesting/blackout period where the option cannot be executed.
573. B2ROBinomialEuropeanAbandonContract

Returns the European option to abandon and contract, using a binomial lattice model, where the option can only be executed at expiration.
574. B2ROBinomialEuropeanAbandonContractExpand

Returns the European option to abandon, contract and expand, using a binomial lattice model, where the option can only be executed at expiration.
575. B2ROBinomialEuropeanAbandonExpand

Returns the European option to abandon and expand, using a binomial lattice model, where the option can only be executed at expiration.
576. B2ROBinomialEuropeanAbandonment

Returns the European option to abandon using a binomial lattice model, where the option can only be executed at expiration.
577. B2ROBinomialEuropeanCall

Returns the European call option with dividends, where the option can only be executed at expiration.
578. B2ROBinomialEuropeanContractExpand

Returns the European option to contract and expand, using a binomial lattice model, where the option can only be executed at expiration.
579. B2ROBinomialEuropeanContraction

Returns the European option to contract using a binomial lattice model, where the option can only be executed at expiration.
580. B2ROBinomialEuropeanExpansion

Returns the European option to expand using a binomial lattice model, where the option can only be executed at expiration.
581. B2ROBinomialEuropeanPut

Returns the European put option with dividends, where the option can only be executed at expiration.
582. B2ROJumpDiffusionCall

Returns the closed-form model for a European call option whose underlying asset follows a Poisson jump-diffusion process.
583. B2ROJumpDiffusionPut

Returns the closed-form model for a European put option whose underlying asset follows a Poisson jump-diffusion process.
584. B2ROM eanRevertingCall

Returns the closed-form model for a European call option whose underlying asset follows a mean-reversion process.
585. B2ROM eanRevertingPut

Returns the closed-form model for a European put option whose underlying asset follows a mean-reversion process.
586. B2ROPentanomialAmericanCall

Returns the Rainbow American call option with two underlying assets (these are typically price and quantity, and are multiplied together to form a new combinatorial pentanomial lattice).
587. B2ROPentanomialAmericanPut

Returns the Rainbow American put option with two underlying assets (these are typically price and quantity, and are multiplied together to form a new combinatorial pentanomial lattice).
588. B2ROPentanomialEuropeanCall

Returns the Rainbow European call option with two underlying assets (these are typically price and quantity, and are multiplied together to form a new combinatorial pentanomial lattice).
589. B2ROPentanomialEuropeanPut

Returns the Rainbow European put option with two underlying assets (these are typically price and quantity, and are multiplied together to form a new combinatorial pentanomial lattice).
590. B2ROQuadranomialJumpDiffusionAmericanCall Returns the American call option whose underlying asset follows a Poisson jump-diffusion process, using a combinatorial quadranomial lattice.
591. B2ROQuadranomialJumpDiffusionAmericanPut Returns the American put option whose underlying asset follows a Poisson jump-diffusion process, using a combinatorial quadranomial lattice.
592. B2ROQuadranomialJumpDiffusionEuropeanCall Returns the European call option whose underlying asset follows a Poisson jump-diffusion process, using a combinatorial quadranomial lattice.
593. B2ROQuadranomiallumpDiffusionEuropeanPut Returns the European put option whose underlying asset follows a Poisson jump-diffusion process, using a combinatorial quadranomial lattice.
594. B2ROStateAmericanCall

Returns the American call option using a state jump function, where the up and down states can be asymmetrical, solved in a lattice model.
595. B2ROStateAmericanPut

Returns the American put option using a state jump function, where the up and down states can be asymmetrical, solved in a lattice model.
596. B2ROStateBermudanCall

Returns the Bermudan call option using a state jump function, where the up and down states can be asymmetrical, solved in a lattice model, and where the option cannot be exercised at certain vesting/blackout periods.
597. B2ROStateBermudanPut

Returns the Bermudan put option using a state jump function, where the up and down states can be asymmetrical, solved in a lattice model, and where the option cannot be exercised at certain vesting/blackout periods.
598. B2ROStateEuropeanCall

Returns the Bermudan call option using a state jump function, where the up and down states can be asymmetrical, solved in a lattice model, and where the option can only be exercised at maturity.
599. B2ROStateEuropeanPut

Returns the Bermudan put option using a state jump function, where the up and down states can be asymmetrical, solved in a lattice model, and where the option can only be exercised at maturity.
600. B2ROTrinomialAmericanCall

Returns the American call option with dividend, solved using a trinomial lattice.
601. B2ROTrinomialAmericanM eanRevertingCall

Returns the American call option with dividend, assuming the underlying asset is mean-reverting, and solved using a trinomial lattice.
602. B2ROTrinomialAmericanM eanRevertingPut

Returns the American call option with dividend, assuming the underlying asset is mean-reverting, and solved using a trinomial lattice.
603. B2ROTrinomialAmericanPut

Returns the American put option with dividend, solved using a trinomial lattice.
604. B2ROTrinomialBermudanCall

Returns the Bermudan call option with dividend, solved using a trinomial lattice, where during certain vesting/blackout periods, the option cannot be exercised.
605. B2ROTrinomialBermudanPut

Returns the Bermudan put option with dividend, solved using a trinomial lattice, where during certain vesting/blackout periods, the option cannot be exercised.
606. B2ROTrinomialEuropeanCall

Returns the European call option with dividend, solved using a trinomial lattice, where the option can only be exercised at maturity.
607. B2ROTrinomialEuropeanM eanRevertingCall

Returns the European call option with dividend, solved using a trinomial lattice, assuming the underlying asset is meanreverting, and where the option can only be exercised at maturity.
608. B2ROTrinomialEuropeanM eanRevertingPut

Returns the European put option with dividend, solved using a trinomial lattice, assuming the underlying asset is mean-
reverting, and where the option can only be exercised at maturity.
609. B2ROTrinomialEuropeanPut

Returns the European put option with dividend, solved using a trinomial lattice, where the option can only be exercised at maturity.
610. B2TrinomiallmpliedArrow DebreuLattice

Computes the complete set of implied Arrow-Debreu prices
in an implied trinomial lattice using actual observed data.
Copy and paste the function and use Ctrl+Shift+Enter to obtain the matrix.
611. B2TrinomiallmpliedArrow DebreuValue

Computes the single value of implied Arrow-Debreu price (for a specific step/column and up-down event/row) in an implied trinomial lattice using actual observed data.
612. B2TrinomiallmpliedCallOptionValue

Computes the European Call Option using an implied trinomial lattice approach, taking into account actual observed inputs.
613. B2TrinomiallmpliedDownProbabilityLattice

Computes the complete set of implied DOWN probabilities in an implied trinomial lattice using actual observed data. Copy and paste the function and use Ctrl+Shift +Enter to obtain the matrix.
614. B2TrinomiallmpliedDownProbabilityValue

Computes the single value of implied DOWN probability (for a specific step/column and up-down event/row) in an implied trinomial lattice using actual observed data.
615. B2TrinomiallmpliedLocalVolatilityLattice

Computes the complete set of implied local probabilities in an implied trinomial lattice using actual observed data. Copy and paste the function and use Ctrl+Shift+Enter to obtain the matrix.
616. B2TrinomiallmpliedLocalVolatilityValue

Computes the single value of localized volatility (for a specific step/column and up-down event/row) in an implied trinomial lattice using actual observed data.
617. B2TrinomiallmpliedUpProbabilityLattice

Computes the complete set of implied UP probabilities in an implied trinomial lattice using actual observed data. Copy and paste the function and use Ctrl+Shift+Enter to obtain the matrix.
618. B2TrinomiallmpliedUpProbabilityValue

Computes the single value of implied UP probability (for a specific step/column and up-down event/row) in an implied trinomial lattice using actual observed data.
619. B2TrinomiallmpliedPutOptionValue

Computes the European Put Option using an implied trinomial lattice approach, taking into account actual observed inputs.
620. B2SharpeRatio

Computes the Sharpe Ratio (returns to risk ratio) based on a series of stock prices of an asset and a market benchmark series of prices.
621. B2SCurveValue

Computes the S-Curve extrapolation's next forecast value based on previous value, growth rate and maximum capacity levels.
622. B2SCurveValueSaturation

Computes the S-Curve extrapolation's saturation level based on previous value, growth rate and maximum capacity levels.
623. B2SemiStandardDeviationPopulation

Computes the semi-standard deviation of the population, that is, only the values below the mean are used to compute an adjusted population standard deviation, a more appropriate measure of downside risk.
624. B2SemiStandardDeviationSample

Computes the semi-standard deviation of the sample, that is,
only the values below the mean are used to compute an adjusted sample standard deviation, a more appropriate measure of downside risk.
625. B2SimulateBernoulli

Returns simulated random numbers from the Bernoulli distribution. Type in RAND() as the random input parameter to generate volatile random values from this distribution.
626. B2SimulateBeta

Returns simulated random numbers from the Beta distribution. Type in RAND() as the random input parameter to generate volatile random values from this distribution.
627. B2SimulateBinomial

Returns simulated random numbers from the Binomial distribution. Type in RAND() as the random input parameter to generate volatile random values from this distribution.
628. B2SimulateChiSquare

Returns simulated random numbers from the Chi-Square distribution. Type in RAND() as the random input parameter to generate volatile random values from this distribution.
629. B2SimulateDiscreteUniform

Returns simulated random numbers from the Discrete Uniform distribution. Type in RAND() as the random input parameter to generate volatile random values from this distribution.
630. B2SimulateExponential

Returns simulated random numbers from the Exponential distribution. Type in RAND() as the random input parameter to generate volatile random values from this distribution.
631. B2SimulateFDist

Returns simulated random numbers from the F distribution.
Type in RAND() as the random input parameter to generate volatile random values from this distribution.
632. B2SimulateGamma

Returns simulated random numbers from the Gamma distribution. Type in RAND() as the random input parameter to generate volatile random values from this distribution.
633. B2SimulateGeometric

Returns simulated random numbers from the Geometric distribution. Type in RAND() as the random input parameter to generate volatile random values from this distribution.
634. B2SimulateGumbelM ax

Returns simulated random numbers from the Gumbel Max distribution. Type in RAND() as the random input parameter to generate volatile random values from this distribution.
635. B2SimulateGumbelM in

Returns simulated random numbers from the Gumbel Min distribution. Type in RAND() as the random input parameter to generate volatile random values from this distribution.
636. B2SimulateLogistic

Returns simulated random numbers from the Logistic distribution. Type in RAND() as the random input parameter to generate volatile random values from this distribution.
637. B2SimulateLognormal

Returns simulated random numbers from the Lognormal distribution. Type in RAND() as the random input parameter to generate volatile random values from this distribution.
638. B2SimulateNormal

Returns simulated random numbers from the Normal distribution. Type in RAND() as the random input parameter to generate volatile random values from this distribution.
639. B2SimulatePareto

Returns simulated random numbers from the Pareto distribution. Type in RAND() as the random input parameter to generate volatile random values from this distribution.
640. B2SimulatePoisson

Returns simulated random numbers from the Poisson distribution. Type in RAND() as the random input parameter to generate volatile random values from this distribution.

641. B2SimulateRayleigh

Returns simulated random numbers from the Rayleigh distribution. Type in RAND() as the random input parameter to generate volatile random values from this distribution.
642. B2SimulateStamndardNormal

Returns simulated random numbers from the Standard Normal distribution. Type in RAND() as the random input parameter to generate volatile random values from this distribution.
643. B2SimulateTDist

Returns simulated random numbers from the Student's T distribution. Type in RAND() as the random input parameter to generate volatile random values from this distribution.
644. B2SimulateTriangular

Returns simulated random numbers from the Triangular distribution. Type in RAND() as the random input parameter to generate volatile random values from this distribution.
645. B2SimulateUniform

Returns simulated random numbers from the Uniform distribution. Type in RAND() as the random input parameter to generate volatile random values from this distribution.
646. B2SimulateWeibull

Returns simulated random numbers from the Weibull distribution. Type in $\operatorname{RAND}()$ as the random input parameter to generate volatile random values from this distribution.
647. B2SixSigmaControlCChartCL

Computes the center line in a control c-chart. C-charts are applicable when only the number of defects are important.
648. B2SixSigmaControlCChartDown1Sigma

Computes the lower 1 sigma limit in a control c-chart. Ccharts are applicable when only the number of defects are important.
649. B2SixSigmaControlCChartDown2Sigma

Computes the lower 2 sigma limit in a control c-chart. Ccharts are applicable when only the number of defects are important.
650. B2SixSigmaControlCChartLCL

Computes the lower control limit in a control c-chart. Ccharts are applicable when only the number of defects are important.
651. B2SixSigmaControlCChartUCL

Computes the upper control limit in a control c-chart. Ccharts are applicable when only the number of defects are important.
652. B2SixSigmaControlCChartUp1Sigma

Computes the upper 1 sigma limit in a control c-chart. Ccharts are applicable when only the number of defects are important.
653. B2SixSigmaControlCChartUp2Sigma

Computes the upper 2 sigma limit in a control c-chart. Ccharts are applicable when only the number of defects are important.
654. B2SixSigmaControINPChartCL

Computes the center line in a control np-chart. NP-charts are applicable when proportions of defects are important, and where in each experimental subgroup, the number of sample size is constant.
655. B2SixSigmaControINPChartDown1Sigma

Computes the lower 1 sigma limit in a control np-chart. NPcharts are applicable when proportions of defects are important, and where in each experimental subgroup, the number of sample size is constant.
656. B2SixSigmaControINPChartDown2Sigma

Computes the lower 2 sigma limit in a control np-chart. NPcharts are applicable when proportions of defects are important, and where in each experimental subgroup, the number of sample size is constant.
657. B2SixSigmaControINPChartLCL

Computes the lower control limit in a control np-chart. NPcharts are applicable when proportions of defects are important, and where in each experimental subgroup, the number of sample size is constant.
658. B2SixSigmaControINPChartUCL

Computes the upper control limit in a control np-chart. NPcharts are applicable when proportions of defects are important, and where in each experimental subgroup, the number of sample size is constant.
659. B2SixSigmaControlNPChartUp1Sigma

Computes the upper 1 sigma limit in a control np-chart. NPcharts are applicable when proportions of defects are important, and where in each experimental subgroup, the number of sample size is constant.
660. B2SixSigmaControINPChartUp2Sigma

Computes the upper 2 sigma limit in a control np-chart. NPcharts are applicable when proportions of defects are important, and where in each experimental subgroup, the number of sample size is constant.
661. B2SixSigmaControIPChartCL

Computes the center line in a control p-chart. P-charts are applicable when proportions of defects are important, and where in each experimental subgroup, the number of sample size might be different.
662. B2SixSigmaControlPChartDown1Sigma

Computes the lower 1 sigma limit in a control p-chart. Pcharts are applicable when proportions of defects are important, and where in each experimental subgroup, the number of sample size might be different.
663. B2SixSigmaControlPChartDown2Sigma

Computes the lower 2 sigma limit in a control p-chart. Pcharts are applicable when proportions of defects are important, and where in each experimental subgroup, the number of sample size might be different.
664. B2SixSigmaControlPChartLCL

Computes the lower control limit in a control p-chart. Pcharts are applicable when proportions of defects are important, and where in each experimental subgroup, the number of sample size might be different.
665. B2SixSigmaControIPChartUCL

Computes the upper control limit in a control p-chart. Pcharts are applicable when proportions of defects are important, and where in each experimental subgroup, the number of sample size might be different.
666. B2SixSigmaControlPChartUp1Sigma

Computes the upper 1 sigma limit in a control p-chart. Pcharts are applicable when proportions of defects are important, and where in each experimental subgroup, the number of sample size might be different.
667. B2SixSigmaControlPChartUp2Sigma

Computes the upper 2 sigma limit in a control p-chart. Pcharts are applicable when proportions of defects are important, and where in each experimental subgroup, the number of sample size might be different.
668. B2SixSigmaControIRChartCL

Computes the center line in a control R-chart. X-charts are used when the number of defects are important, in each subgroup experiment multiple measurements are taken, and the range of the measurements is the variable plotted.
669. B2SixSigmaControlRChartLCL

Computes the lower control limit in a control R-chart. Xcharts are used when the number of defects are important, in each subgroup experiment multiple measurements are taken, and the range of the measurements is the variable plotted.
670. B2SixSigmaControIRChartUCL

Computes the upper control limit in a control R-chart. Xcharts are used when the number of defects are important,
in each subgroup experiment multiple measurements are taken, and the range of the measurements is the variable plotted.
671. B2SixSigmaControIUChartCL

Computes the center line in a control u-chart. U-charts are applicable when number of defects are important, and where in each experimental subgroup, the number of sample sizes are the same.
672. B2SixSigmaControlUChartDown1Sigma

Computes the lower 1 sigma limit in a control u-chart. Ucharts are applicable when number of defects are important, and where in each experimental subgroup, the number of sample sizes are the same.
673. B2SixSigmaControlUChartDown2Sigma

Computes the lower 2 sigma limit in a control u-chart. Ucharts are applicable when number of defects are important, and where in each experimental subgroup, the number of sample sizes are the same.
674. B2SixSigmaControlUChartLCL

Computes the lower control limit in a control u-chart. Ucharts are applicable when number of defects are important, and where in each experimental subgroup, the number of sample sizes are the same.
675. B2SixSigmaControIUChartUCL

Computes the upper control limit in a control u-chart. Ucharts are applicable when number of defects are important, and where in each experimental subgroup, the number of sample sizes are the same.
676. B2SixSigmaControlUChartUp1Sigma

Computes the upper 1 sigma limit in a control u-chart. Ucharts are applicable when number of defects are important, and where in each experimental subgroup, the number of sample sizes are the same.
677. B2SixSigmaControlUChartUp2Sigma

Computes the upper 2 sigma limit in a control u-chart. Ucharts are applicable when number of defects are important, and where in each experimental subgroup, the number of sample sizes are the same.
678. B2SixSigmaControIXChartCL

Computes the center line in a control X-chart. X-charts are used when the number of defects are important, in each subgroup experiment multiple measurements are taken, and the average of the measurements is the variable plotted.
679. B2SixSigmaControlXChartLCL

Computes the lower control limit in a control X-chart. Xcharts are used when the number of defects are important, in each subgroup experiment multiple measurements are taken, and the average of the measurements is the variable plotted.
680. B2SixSigmaControlXChartUCL

Computes the upper control limit in a control X-chart. Xcharts are used when the number of defects are important, in each subgroup experiment multiple measurements are taken, and the average of the measurements is the variable plotted.
681. B2SixSigmaControIXM RChartCL

Computes the center line in a control XmR-chart. XmR-are used when the number of defects are important with only a single measurement for each sample and a time-series of moving ranges is the variable plotted.
682. B2SixSigmaControIXM RChartLCL

Computes the lower control limit in a control XmR-chart. XmR-are used when the number of defects are important with only a single measurement for each sample and a timeseries of moving ranges is the variable plotted.
683. B2SixSigmaControIXM RChartUCL

Computes the upper control limit in a control XmR-chart. XmR-are used when the number of defects are important
with only a single measurement for each sample and a timeseries of moving ranges is the variable plotted.
684. B2SixSigmaDeltaPrecision

Computes the error precision given specific levels of Type I
and Type II errors, as well as the sample size and variance.
685. B2SixSigmaSampleSize

Computes the required minimum sample size given Type I and Type II errors, as well as the required precision of the mean and the error tolerances.
686. B2SixSigmaSampleSizeDPU

Computes the required minimum sample size given Type I
and Type II errors, as well as the required precision of the
defects per unit and the error tolerances.
687. B2SixSigmaSampleSizeProportion

Computes the required minimum sample size given Type I
and Type II errors, as well as the required precision of the proportion of defects and the error tolerances.
688. B2SixSigmaSampleSizeStdev

Computes the required minimum sample size given Type I and Type II errors, as well as the required precision of the standard deviation and the error tolerances.
689. B2SixSigmaSampleSizeZeroCorrelTest

Computes the required minimum sample size to test if a correlation is statistically significant at an alpha of 0.05 and beta of 0.10.
690. B2SixSigmaStatCP

Computes the potential process capability index Cp given the actual mean and sigma of the process, including the upper and lower specification limits.
691. B2SixSigmaStatCPK

Computes the process capability index Cpk given the actual mean and sigma of the process, including the upper and lower specification limits.
692. B2SixSigmaStatDPM O

Computes the defects per million opportunities (DPMO) given the actual mean and sigma of the process, including the upper and lower specification limits.
693. B2SixSigmaStatDPU

Computes the proportion of defective units (DPU) given the actual mean and sigma of the process, including the upper and lower specification limits.
694. B2SixSigmaStatProcessSigma

Computes the process sigma level given the actual mean and sigma of the process, including the upper and lower specification limits.
695. B2SixSigmaStatYield

Computes the nondefective parts or the yield of the process given the actual mean and sigma of the process, including the upper and lower specification limits.
696. B2SixSigmaUnitCPK

Computes the process capability index Cpk given the actual counts of defective parts and the total opportunities in the population.
697. B2SixSigmaUnitDPM 0

Computes the defects per million opportunities (DPMO) given the actual counts of defective parts and the total opportunities in the population.
698. B2SixSigmaUnitDPU

Computes the proportion of defective units (DPU) given the actual counts of defective parts and the total opportunities in the population.
699. B2SixSigmaUnitProcessSigma

Computes the process sigma level given the actual counts of defective parts and the total opportunities in the population.
700. B2SixSigmaUnitYield

Computes the nondefective parts or the yield of the process given the actual counts of defective parts and the total opportunities in the population.
701. B2StandardNormalBivariateCDF

Given the two Z-scores and correlation, returns the value of the bivariate standard normal (means of zero, variances of 1) cumulative distribution function.
702. B2StandardNormalCDF

Given the Z-score, returns the value of the standard normal (mean of zero, variance of 1) cumulative distribution function.
703. B2StandardNormallnverseCDF

Computes the inverse cumulative distribution function of a standard normal distribution (mean of 0 and variance of 1)
704. B2StandardNormalPDF

Given the Z-score, returns the value of the standard normal (mean of zero, variance of 1) probability density function.
705. B2StockIndexCallOption

Similar to a regular call option but the underlying asset is a reference stock index such as the Standard and Poors 500. The analysis can be solved using a Generalized Black-ScholesM erton M odel as well.
706. B2StockIndexPutOption

Similar to a regular put option but the underlying asset is a reference stock index such as the Standard and Poors 500. The analysis can be solved using a Generalized Black-ScholesM erton Model as well.
707. B2SuperShareOptions

The option has value only if the stock or asset price is between the upper and lower barriers, and at expiration, provides a payoff equivalent to the stock or asset price divided by the lower strike price (S / X Lower).
708. B2SwaptionEuropeanPayer

European Call Interest Swaption.
709. B2SwaptionEuropeanReceiver

European Put Interest Swaption.
710. B2TakeoverFXOption

At a successful takeover (foreign firm value in foreign currency is less than the foreign currency units), option holder can purchase the foreign units at a predetermined strike price (in exchange rates of the domestic to foreign currency).
711. B2TimeSwitchOptionCall

Holder gets AccumAmount x TimeSteps each time asset > strike for a call. TimeSteps is frequency asset price is checked if strike is breached (e.g., for 252 trading days, set DT as $1 / 252$).
712. B2TimeSwitchOptionPut

Holder gets AccumAmount x TimeSteps each time asset < strike for a put. TimeSteps is frequency asset price is checked if strike is breached (e.g., for 252 trading days, set DT as 1/252).
713. B2TradingDayAdjustedCall

Call option corrected for varying volatilities (higher on trading days than on non-trading days). Trading Days Ratio is the number of trading days left until maturity divided by total trading days per year (between 250 and 252).
714. B2TradingDayAdjustedPut

Put option corrected for varying volatilities (higher on trading days than on non-trading days). Trading Days Ratio is the number of trading days left until maturity divided by total trading days per year (between 250 and 252).
715. B2TwoAssetBarrierDownandlnCall

Valuable or knocked in-the-money only if the lower barrier is breached (reference Asset 2 goes below the barrier), and the payout is in the option on Asset 1 less the strike price.
716. B2TwoAssetBarrierDownandlnPut

Valuable or knocked in-the-money only if the lower barrier is breached (reference Asset 2 goes below the barrier), and the payout is in the option on the strike price less the Asset 1 value.
717. B2TwoAssetBarrierDownandOutCall

Valuable or stays in-the-money only if the lower barrier is not breached (reference Asset 2 does not go below the barrier), and the payout is in the option on Asset 1 less the strike price.
718. B2TwoAssetBarrierDownandOutPut

Valuable or stays in-the-money only if the lower barrier is not breached (reference Asset 2 does not go below the barrier), and the payout is in the option on the strike price less the Asset 1 value.
719. B2TwoAssetBarrierUpandInCall

Valuable or knocked in-the-money only if the upper barrier is breached (reference Asset 2 goes above the barrier), and the payout is in the option on Asset 1 less the strike price.
720. B2TwoAssetBarrierUpandInPut

Valuable or knocked in-the-money only if the upper barrier is breached (reference Asset 2 goes above the barrier), and the payout is in the option on the strike price less the Asset 1 value.
721. B2TwoAssetBarrierUpandOutCall

Valuable or stays in-the-money only if the upper barrier is not breached (reference Asset 2 does not go above the barrier), and the payout is in the option on Asset 1 less the strike price.
722. B2TwoAssetBarrierUpandOutPut

Valuable or stays in-the-money only if the upper barrier is not breached (reference Asset 2 does not go above the barrier), and the payout is in the option on the strike price less the Asset 1 value.
723. B2TwoAssetCashOrNothingCall

Pays cash at expiration as long as both assets are in the money. For call options, both asset values must be above their respective strike prices.
724. B2TwoAssetCashOrNothingDownUp

Cash will only be paid if at expiration, the first asset is below the first strike, and the second asset is above the second strike.
725. B2TwoAssetCashOrNothingPut

Pays cash at expiration as long as both assets are in the money. For put options, both assets must be below their respective strike prices).
726. B2TwoAssetCashOrNothingUpDown

Cash will only be paid if the first asset is above the first strike price, and the second asset is below the second strike price at maturity.
727. B2TwoAssetCorrelationCall

Asset 1 is the benchmark asset, whereby if at expiration Asset 1's values exceed Strike 1's value, then the option is knocked in the money, and the payoff on the option is Asset 2 - Strike 2, otherwise the option becomes worthless.
728. B2TwoAssetCorrelationPut

Asset 1 is the benchmark asset, whereby if at expiration Asset l's value is below Strike l's value, then the put option is knocked in the money, and the payoff on the option is Strike 2 - Asset 2, otherwise the option becomes worthless.
729. B2VaRCorrelationM ethod

Computes the Value at Risk using the Variance-Covariance and Correlation method, accounting for a specific VaR percentile and holding period.
730. B2VarOptions

Computes the Value at Risk of a portfolio of correlated options.
731. B2Volatility

Returns the Annualized Volatility of time-series cash flows. Enter in the number of periods in a cycle to annualize the volatility (1=annual, 4=quarter, 12=monthly data.
732. B2VolatilitylmpliedforDefaultRisk

Only used when computing the implied volatility required for
optimizing an option model to compute the probability of default.
733. B2WarrantsDilutedValue

Returns the value of a warrant (like an option) that is convertible to stock while accounting for dilution effects based on the number of shares and warrants outstanding.
734. B2WriterExtendibleCallOption

The call option is extended beyond the initial maturity to an extended date with a new extended strike if at maturity the option is out of the money, providing a safety net of time for the option holder.
735. B2WriterExtendiblePutOption

The put option is extended beyond the initial maturity to an extended date with a new extended strike if at maturity the option is out of the money, providing a safety net of time for the option holder.
736. B2YieldCurveBIM

Returns the Yield Curve at various points in time using the Bliss model.
737. B2YieldCurveNS

Returns the Yield Curve at various points in time using the Nelson-Siegel approach.
738. B2ZEOB

Returns the Economic Order Batch or the optimal quantity to be manufactured on each production batch.
739. B2ZEOBBatch

Returns the Economic Order Batch analysis' optimal number of batches to be manufactured per year.
740. B2ZEOBHoldingCost

Returns the Economic Order Batch analysis' cost of holding excess units per year if manufactured at the optimal level.
741. B2ZEOBProductionCost

Returns the Economic Order Batch analysis' total cost of setting up production per year if manufactured at the optimal level.
742. B2ZEOBTotalCost

Returns the Economic Order Batch analysis' total cost of production and holding costs per year if manufactured at the optimal level.
743. B2ZEOQ

Economic Order Quantity's order size on each order.
744. B2ZEOQExcess

Economic Order Quantity's excess safety stock level
745. B2ZEOQOrders

Economic Order Quantity's number of orders per year
746. B2ZEOQProbability

Economic Order Quantity's probability of out of stock
747. B2ZEOQReorderPoint

Economic Order Quantity's reorder point
The following lists the statistical and analytical tools in the M odeling Toolkit:
748. Statistical Tool: Chi-Square Goodness of Fit Test
749. Statistical Tool: Chi-Square Independence Test
750. Statistical Tool: Chi-Square Population Variance Test
751. Statistical Tool: Dependent M eans (T)
752. Statistical Tool: Friedman's Test
753. Statistical Tool: Independent and Equal Variances (T)
754. Statistical Tool: Independent and Unequal Variances (T)
755. Statistical Tool: Independent M eans (Z)
756. Statistical Tool: Independent Proportions (Z)
757. Statistical Tool: Independent Variances (F)
758. Statistical Tool: Kruskal-Wallis Test
759. Statistical Tool: Lilliefors Test
760. Statistical Tool: Principal Component Analysis
761. Statistical Tool: Randomized Block M ultiple Treatments
762. Statistical Tool: Runs Test
763.
764.
765.
766.
767.
768.
769.
770.
771.
772.

Valuation Tool: Lattice M aker for Debt
Valuation Tool: Lattice M aker for Yield

The following lists Risk Simulator tools/applications that are used in the M odeling Toolkit:
773. M onte Carlo Simulation using 25 statistical distributions
774. M onte Carlo Simulation: Simulations with Correlations
775. M onte Carlo Simulation: Simulations with Precision Control
776. M onte Carlo Simulation: Simulations with Truncation
777. Stochastic Forecasting: Box-Jenkins ARIM A
778. Stochastic Forecasting: M aximum Likelihood
779. Stochastic Forecasting: Nonlinear Extrapolation
780. Stochastic Forecasting: Regression Analysis
781. Stochastic Forecasting: Stochastic Processes
782. Stochastic Forecasting: Time-Series Analysis
783. Portfolio Optimization: Discrete Binary Decision Variables
784. Portfolio Optimization: Discrete Decision Variables
785. Portfolio Optimization: Discrete Continuous Decision Variables
786. Portfolio Optimization: Static Optimization
787. Portfolio Optimization: Dynamic Optimization
788. Portfolio Optimization: Stochastic Optimization
789. Simulation Tools: Bootstrap Simulation
790. Simulation Tools: Custom Historical Simulation
791. Simulation Tools: Data Diagnostics
792. Simulation Tools: Distributional Analysis
793. Simulation Tools: M ultiple Correlated Data Fitting
794. Simulation Tools: Scenario Analysis
795. Simulation Tools: Sensitivity Analysis
796. Simulation Tools: Single Data Fitting
797. Simulation Tools: Statistical Analysis
798. Simulation Tools: Tornado Analysis

The following lists Real Options SLS tools/applications used in the M odeling Toolkit:
799. Audit Sheet Functions
800. Changing Volatility and Risk-free Rates M odel
801. Lattice M aker
802. SLS Single Asset and Single Phase: American Options
803. SLS Single Asset and Single Phase: Bermudan Options
804. SLS Single Asset and Single Phase: Customized Options
805. SLS Single Asset and Single Phase: European Options
806. SLS M ultiple Asset and M ultiple Phases
807. SLS M ultinomial Lattices: Trinomials
808. SLS M ultinomial Lattices: Trinomial M ean-Reversion
809. SLS M ultinomial Lattices: Quadranomials
810. SLS M ultinomial Lattices: Pentanomials

